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abstract: Populations unable to evolve to selectively favored states
are constrained. Genetic constraints occur when additive genetic var-
iance in selectively favored directions is absent (absolute constraints)
or present but small (quantitative constraints). Quantitative—unlike
absolute—constraints are presumed surmountable given time. This
ignores that a population might become extinct before reaching the
favored state, in which case demography effectively converts a quan-
titative into an absolute constraint. Here, we derive criteria for pre-
dicting when such conversions occur. We model the demography
and evolution of populations subject to optimizing selection that
experience either a single shift or a constant change in the optimum.
In the single-shift case, we consider whether a population can evolve
significantly without declining or else declines temporarily while
avoiding low sizes consistent with high extinction risk. We analyze
when populations in constantly changing environments evolve suf-
ficiently to ensure long-term growth. From these, we derive formulas
for critical levels of genetic variability that define demography-caused
absolute constraints. The formulas depend on estimable properties
of fitness, population size, or environmental change rates. Each ex-
tends to selection on multivariate traits. Our criteria define the nearly
null space of a population’s G matrix, the set of multivariate direc-
tions effectively inaccessible to it via adaptive evolution.

Keywords: quantitative genetics, optimizing selection, extinction,
multivariate traits, nearly null space.

Introduction

Evolutionary constraints are factors that prevent a pop-
ulation from obtaining a target phenotype, such as one
that maximizes fitness. The empirical study of constraints
is often approached from a quantitative genetic perspec-
tive. As a result, several recent studies have explored stand-
ing patterns of heritable variation and covariation with the
least amount of genetic variation and, hence, relatively
little evolutionary potential (Kirkpatrick and Lofsvold
1992; Blows et al. 2004; Mezey and Houle 2005). These
patterns are the opposite of evolutionary lines of least
resistance (Schluter 1996); they are the directions in which
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evolution would be expected to proceed the slowest in the
short term. In the long term on a curved adaptive land-
scape, these are the directions along which the population
will spend the most time evolving (e.g., Via and Lande
1985).

We have previously drawn a distinction between ab-
solute and quantitative constraints (Houle 2001; Mezey
and Houle 2005). A population’s evolutionary potential is
absolutely constrained if it completely lacks additive ge-
netic variation in some direction in phenotype space. Such
a constraint might consist of an absence of variation in a
single trait or set of traits, although relatively few large
quantitative genetic studies have failed to detect genetic
variation in individual traits (Lewontin 1974). A more
likely source of absolute constraint is an absence of var-
iation in particular combinations of traits, for example,
variation that allows a simultaneous increase in fecundity
and viability. These combinations of traits, which are in-
accessible to evolution, constitute a null space. Whatever
the precise nature of an absolute constraint, it will result
in a G matrix of additive-genetic variances and covariances
that is singular.

A quantitative constraint exists when the ability to re-
spond to selection is present but limited. When genetic
variation does exist in the direction of the selection gra-
dient, it is often a matter of interpretation whether it is
useful to regard evolution as constrained. On the one hand,
virtually any pattern of genetic variation and covariation
will quantitatively constrain evolution in the sense that the
ability to respond to selection will be less than maximal
(Clark 1987; Arnold 1992) or slower than some standard
(Agrawal and Stinchcombe 2009). On the other hand, if
the pattern of selection stays constant, “small” amounts
of heritable variation may represent no constraint at all if
selection is applied for a long enough period of time (Zeng
1988). A number of situations where such quantitative
constraints are nevertheless biologically important have
been suggested, such as the deflection of the course of
evolution from one optimum to another (Steppan et al.
2002; Blows and Hoffman 2005).

We argue here that demographic limitations on a pop-
ulation can convert quantitative evolutionary constraints
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into insuperable barriers to adaptation. This can occur
either because a population can fail to adapt sufficiently
fast to avoid extinction or because selection cannot be
arbitrarily strong without undermining the persistence of
the population to which it is applied. Our main idea is
that demographic consequences of adaptive change them-
selves impose evolutionary constraints, which we will call
demographic evolutionary constraints. The novel aspect
of our approach is that it explicitly considers the joint
dynamics of evolution and population size, revealing the
direct demographic consequences of slow adaptive change
or strong selection.

The primary objective of this article, then, is to develop
definitions of demographic constraints that can be applied
to standing patterns of heritable variation in single and
multivariate quantitative traits. We introduce the under-
lying concepts in the relatively simple case where fitness
depends on a single quantitative trait and extend these to
cases in which fitness depends on multiple traits, thereby
defining a nearly null space for evolution. We consider
three demographic criteria. The most stringent requires
that a population not decline. The other two allow tran-
sient declines but require long-term growth or that pop-
ulation size remains above dangerously small levels.

Constraints for Single Traits

We begin developing our demographically based concepts
of evolutionary constraints for a population in which fit-
ness depends on a single phenotypic trait. Specifically, as-
sume the population has discrete, nonoverlapping gen-
erations and that individual absolute fitness depends on a
quantitative trait z subject to Gaussian optimizing selec-
tion: . Here, v is the op-2 2W(z) p F exp [�(1/2)(z � v) /q ]
timum phenotype and quantifies the strength of sta-21/q
bilizing selection. The parameter F is the maximum
possible absolute fitness, that is, the number of descen-
dants produced by an individual with the optimal phe-
notype. We assume fitnesses are density independent or
nearly so, as might occur in a population well below car-
rying capacity.

If z has a normal distribution with mean and phe-z̄
notypic variance , then the mean fitness is2 ¯j W(z)P

2¯(z � v)ˆ¯W(z) p F exp � , (1)
22n 

where and2 2 2 2 2 1/2 2 2ˆn p q � j F p F(q /n ) p F[q /(q �P

(e.g., Gomulkiewicz and Holt 1995). We assume2 1/2j )]P

hard selection (see Wallace 1970) such that (density-
independent) absolute mean fitness is also the pop-¯W(z)
ulation’s finite per capita growth rate; growth is assured

so long as . The quantity is the maximum pos-ˆ¯W(z) ≥ 1 F
sible rate of population growth when the mean phenotype
is at the optimum; because the existence of phe-F̂ ! F
notypic variance ensures that individuals cannot all have
the optimum phenotype v.

We first consider evolutionary scenarios where a pop-
ulation starts evolving at a phenotype displaced from the
optimum state v, which remains fixed while the population
either adapts or becomes extinct. We refer to this as the
single-shift scenario, since we imagine that the displace-
ment might arise from a single discrete change in the
environment. This might occur, for example, as a result
of the introduction or extinction of species with which the
target species interacts. The single-shift scenario has been
shown to yield the best fit among a collection of simple
evolutionary models to an extensive database on pheno-
typic divergence (Estes and Arnold 2007).

Once the optimum shift occurs, adaptive evolution will
move the population closer to its optimum phenotype and
maximal mean fitness as long as there is additive genetic
variance in the selected trait. To see this, consider the one-
generation evolutionary response of the mean phenotype
to Gaussian stabilizing selection ¯ ¯ ¯Dz p z � z pt�1 t

, where is the additive-genetic variance for2 2 2¯j (v � z )/n jA t A

the trait (Lande 1976). From this and the identity 2j pP

, it follows that the distance from the optimum2 2j � jA E

shrinks by a factor each generation and, indeed,2 21 � j /nA

that

t2jAd p 1 � d , (2)t 02( )n

where is the distance from the optimum after¯d p Fz � vFt t

t generations of selection. As a consequence, the popu-
lation growth rate (eq. [1]) will increase monotonically to
its maximum value provided that additive-genetic var-F̂
iance is not 0.

Under these idealized circumstances, evolution is un-
constrained except in the complete absence of additive-
genetic variation. Indeed, let be the mag-¯ ¯R p Fz � z Ft t 0

nitude of evolutionary divergence after t generations of
adaptation. From equation (2),

t2jAR p d � d p 1 � 1 � d . (3)t 0 t 02[ ( ) ]n

Thus, any amount of adaptive divergence is theoretically
possible, provided only that . However, evolution of2j 1 0A

the mean phenotype toward the new optimum matters
only if the population does not become extinct before
reaching that optimum.
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Constraints Imposed by Consistent Growth
under a Single Optimum Shift

A population that never declines in size certainly avoids
risking extinction. This sufficient requirement for persis-
tence, in turn, imposes strict limitations on the size of the
shift in the optimum after which a population can still
grow. From equation (1), the boundary between popu-
lation growth and decline is defined by ˆW p F exp [�

, where . Rearranging this2 2 ¯(1/2)d /n ] p 1 d p Fz � vF
equation shows that a static population (i.e., one that is
neither growing nor declining) must differ from the phe-
notypic optimum by amount

2 2ˆ�d p n ln F . (4)stat

Population size will fall whenever its mean phenotype is
further than dstat from the optimum and increase when it
is closer.

The requirement that a population never declines means
that for all t. In the case of a single unchangingd ≤ dt stat

optimum, this requirement will be satisfied whenever the
initial distance . Incorporating this limit intod ≤ d0 stat

equation (3) and using equation (4) shows that

t2jA 2 2ˆ�R ≤ 1 � 1 � n ln F . (5)t 2[ ( ) ]n

The requirement that a population not decline thus limits
its evolutionary divergence, even when . Indeed,2j 1 0A

the possible divergence is bounded above by R p�
2 2 1/2ˆ(n ln F ) .
Inequality (5) can be used to formulate a definition of

evolutionary constraint in terms of heritable genetic var-
iation. Suppose there is a minimum amount of divergence,
Rmin, regarded as biologically relevant. For example, Rmin

might be the smallest statistically detectable change for a
given feasible sample size or the smallest morphological
difference needed to assign subspecific status. According
to inequality (5), if the right-hand side of in-R ! Rt min

equality (5) is less than Rmin. Rearranging the latter in-
equality shows that the population will be constrained
( ) whenever , where2 2R ! R j ! jt min A A, crit

2 2 1/tj p n (1 � r ) (6)A, crit

and . That is, a population’s effectiver p (R � R )/R� min �

capacity to evolve in response to a single optimum shift
is constrained by the requirement of consistent growth if

is smaller than . The dimensionless parameter2 2j j rA A, crit

ranges between 0 and 1 and indicates the ecological op-
portunity for evolving beyond the minimum divergence
without declining in size.

The presence of time parameter t in constraint condition
(6) limits its usefulness for assessing constraints to non-
equilibrium populations. Still, there are a number of sit-
uations in which evolutionary biologists have an interest
in the role of time-dependent constraints for ongoing evo-
lution. These include mechanistic studies of rates of phe-
notypic divergence over geological time (e.g., Estes and
Arnold 2007) and, in conservation biology, projecting ca-
pacities for rapid adaptive evolution in response to habitat
destruction, invasion, or climate change (Bradshaw and
Holzapfel 2006). Time-dependent constraints are of par-
amount importance to plant and animal breeders who seek
to achieve breeding objectives in the shortest time.

Constraint (6) depends on three parameters that to-
gether define the Gaussian absolute fitness surface for a
population: the “width” of the surface, ; the2 2 2n p q � jP

distance to the optimum phenotype, ; and the¯d p Fz � vF
corresponding population growth rate, . Note thatW R �

can be estimated from these parameters since, from equa-
tion (1),

2 22 2 2 2 2 2ˆ ¯n ln F p n ln W � (z � v) p n ln W � d .

Many empirical studies report values of these param-
eters standardized by the phenotypic variance (King-2jP

solver et al. 2001), so it is useful to recast constraint (6)
in terms of heritability, :2 2 2h p j /jcrit A P

1/t
R̃min2 2 1/t 2˜ ˜h p n (1 � r ) p n 1 � 1 � ,crit [ ( ) ]22 2˜�ñ ln W � d

(7a)

where , , and are2 2 2 ˜ ˜¯ñ p n /j d p Fz � vF/j R p R /jP P min min P

the variance-standardized, nondimensional values. Alter-
natively, the mean-standardized version of the con-
straint—the critical “evolvability” (Houle 1992)—is

1/t
R̆min2˘I p n 1 � 1 � , (7b)A, crit ( )22 2˘�n̆ ln W � d 

where , , and . Both2 2 2 ˘ ˘¯ ¯ ¯ ¯n̆ p n /z d p Fz � vF/z R p R /zmin min

standardizations make assumptions about the scaling of
variances to the population mean (for further information
about this issue, see Hansen and Houle 2008).

As a practical point, parameters estimated from an ex-
perimental population can be used in constraint formula
(6) to assess constraints for a wild population with a dif-
ferent mean phenotype, assuming that both share the same
Gaussian absolute fitness surface. Experimental studies
that have jointly estimated variance-standardized and2ñ
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Figure 1: Log-linear plot of minimum heritabilities needed to evolve at least phenotypic standard deviations without population declineR̃ p 0.5min

versus evolutionary time (eq. [7a]) for various assumptions regarding the growth rate of study populations. From right to left, curves correspond
to , 2, 3, and 5, respectively. Other parameter values: , .2 ˜˜W p 1 n p 6.5 d p 0.8

suggest that the median values are, very roughly, 2˜ ˜d n p
and (app. A). These same studies do not report˜6.5 d p 0.8

corresponding finite growth rates, but it seems reasonable
that the surveyed populations were not in decline, which
implies . We consider only such growth rates in ourW ≥ 1
figures.

Figure 1 shows critical heritability (eq. [7a]) plotted
versus divergence time t for phenotypic stan-R̃ p 0.5min

dard deviations. This value of corresponds to aR̃min

between-population difference that would be detected with
!80% power using a two-sample t-test, given a sample size
of 50 and 5% significance level. The results indicate that
few populations would diverge too little for statistical de-
tection after 1,000 generations of evolution, but those with
heritabilities !0.1 would fail to evolve detectable differ-
ences within 100 generations and, in that sense, are
constrained.

Mayr (1969) proposed that subspecific rank be defined
by a morphological difference of at least phe-R̃ p 2.6min

notypic standard deviations. According to inequality (5),
the maximal possible variance-standardized response to
selection is . Thus, if22 2 1/2 2 2 1/2˜˜ ˆ˜ ˜R p (n ln F ) p (n ln W � d )�

a population’s absolute fitness surface were parameterized
by ballpark values , , and , it could2 ˜ñ p 6.5 d p 0.8 W ! 1.6
not attain subspecific rank under the single-shift scenario
without experiencing a period of decline.

Constraints from Avoiding Low Population Size
under an Optimum Shift

A population that falls in size is not necessarily doomed to
extinction as long as the decline is temporary. However,

even a population capable of growth may readily become
extinct if its numbers ever become small. This is because
small population size is associated with extinction risks such
as demographic stochasticity, Allee effects, and inbreeding.
To avoid these risks, a population must, in addition to being
capable of long-term growth, avoid dangerously low pop-
ulation sizes. We show how the demographic requirement
of remaining above critically low population sizes imposes
its own evolutionary constraint.

We develop this concept of constraint by adopting the
same assumptions for population and evolutionary dy-
namics as in “Constraints Imposed by Consistent Growth
under a Single Optimum Shift” but now assume that the
population declines deterministically in size initially, so

. Since mean fitness increases monotonically¯W(z ) ! 10

when , the decline should be only temporary. How-2j 1 0A

ever, if the population reaches very low numbers in the
course of adaptation, it may become extinct before mean
fitness can recover to a level consistent with growth.

Gomulkiewicz and Holt (1995) analyzed this scenario.
In their joint evolutionary-demographic model, is pop-Nt

ulation size at time t. Then , where¯N p W(z )Nt�1 t t

is the mean fitness in generation t (eq. [1]). Rather¯W(z )t
than model extinction directly, they used an artifice, as-
suming the existence of a quasi extinction threshold size,
Nq, below which the population would face a dramatically
increased risk of immediate extinction. Quasi extinction
thresholds are sometimes used in population viability anal-
yses to represent the smallest population size above which
Allee effects, demographic stochasticity, and inbreeding
depression can be ignored (Lande et al. 2003).
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Figure 2: Minimum heritabilities consistent with avoiding low popula-
tion size versus the order of magnitude of initial population size above
the quasi extinction threshold (eqq. [8] with , , ).2 ˜ñ p 6.5 d p 0.8 W p 2
From left to right, curves correspond to increasing initial distance from
the optimum ( , 1, 1.5, and 2 phenotypic standard deviations).d̃ p 0.50

Gomulkiewicz and Holt’s analyses showed that a pop-
ulation’s prospects of extinction depend on three factors:
the initial rate of population decline, the ratio of initial to
quasi extinction size, and the additive-genetic variance of
the trait governing fitness. In the single-shift scenario, the
initial rate of decline (or maladaptation) is positively re-
lated to the distance from the phenotypic optimum

(see eq. [1]). Using equations (7) and (8)¯d p Fz � vF0 0

from Gomulkiewicz and Holt (1995) and variance-scaled
parameter values, it can be shown that critical levels of
each of these factors are determined implicitly by the un-
tidy but useful equation

22 2 2 2 2t˜ ˜ R N˜d d 1 � (1 � h /n ) q0 crit2t ln W � � # p ln ,R 2 2 2 2 2( ) ( )˜ ˜ ˜n n 1 � (1 � h /n ) Ncrit 0

(8a)

where tR is the time required for a population to evolve a
growth rate that exceeds 1 and recover from its initial
decline:

22 2 2˜ ˜˜ln (n ln W � d ) � ln d0

t p . (8b)R 2 2 2˜ln [1 � (1 � h /n ) ]crit

The unscaled version of equations (8) has the same form
but with the nondimensional parameters replaced by their
untransformed values and with replaced by . The2 2h jcrit A, crit

mean-standardized constraint takes the same form as well
but with , , and in place of , , and ,2 2˘ ˘ ˜ ˜¯˘ ˜n d d p d /z n d d0 0 0

respectively, and with taking the place of .2I hA, crit crit

Equations (8) can be used to solve for the minimum
heritability , consistent with remaining above danger-2hcrit

ously low population sizes in terms of the other param-
eters. Populations with heritabilities less than will face2hcrit

high extinction risks when the optimum undergoes a single
shift of the size assumed. Note that, in contrast to equa-
tions (6) and (7), this definition does not require explicit
specification of a minimal evolutionary response since that
is determined by the requirement to remain above low
densities. However, equations (8) do require additional
input regarding the focal population’s initial size relative
to the quasi extinction threshold, , and its initialN /Nq 0

deviation from the optimum, . (Estimates of , , and2˜ ˜˜d n d0

can come from another population with the same Gaus-W
sian fitness surface.) Figure 2 illustrates the functional re-
lationships between and these two new parameters2hcrit

using the same estimates for the other parameters as above.
These functions illustrate that the requirement of main-
taining sufficient population size can impose severe con-
straints on evolution for populations that are relatively

near quasi extinction or in steep decline (indicated by large
).d̃0

Constraints of Long-Term Persistence
in a Changing Environment

Many populations face perpetually changing environments
and will confront certain extinction unless they can con-
tinually adapt (e.g., Davis and Shaw 2001; Davis et al.
2005). The requirement of long-term persistence in a
changing environment imposes its own form of evolu-
tionary constraint. Consider the same model of optimizing
selection as above but where the optimal phenotype v

changes through time. Bürger and Lynch (1995; see also
Lynch and Lande 1993) showed among other things that
if the optimum changes at rate k with time t, that is,

, then long-term persistence is assured, providedv p ktt

that the asymptotic population growth rate, W p�

, exceeds 1. They used this expression2 2 4F̂ exp [�(1/2)k n /j ]A

to define a critical rate of environmental change beyond
which a population would ultimately decline to extinction.

Bürger and Lynch’s expression can also be used to de-
termine the minimum amount of additive variance needed
to ensure long-term population growth in an environment
changing at a given rate k. Setting equal to 1 and solvingW�

for suggests a critical value of additive-genetic variance2jA



Demographic Constraints E223

Figure 3: Log-linear plot of the minimum heritabilities needed to persist
versus the rate of environment change (eqq. [10]). From left to right,k̃
curves correspond to , 2, 3, and 5, respectively. Other parameters:W p 1

, .2 ˜ñ p 6.5 d p 0.8

below which a population will become asymptotically ex-
tinct:

2n
2 �j p FkF . (9)A, crit 2ˆln F

A phenotypic variance-scaled version of this equation is

2 2˜ ˜n n
2 ˜ ˜�h p FkF p FkF , (10a)crit 2ˆ 22 2˜ln F �ñ ln W � d

where and the other parameters are as previouslyk̃ p k/jP

defined (fig. 3). The mean-standardized version of equa-
tion (9) is

2 2˘ ˘n n˘ ˘�I p FkF p FkF , (10b)A, crit 2ˆ 22 2˘ln F �n̆ ln W � d

where and the other parameters are as defined˘ ¯k p k/z
above.

Equation (10a) shows that the critical heritability—and
thus the degree of constraint—is directly proportional to
the speed of environmental change. But since , this2h ≤ 1
obtains only until reaches the value˜ ˜k k pmax

, above which it is impossible for any22 2 1/2 2˜˜ ˜(n ln W � d ) /n
population, even one with perfect heritability, to evolve
sufficiently fast to persist (fig. 3). This prohibitive rate may
be quite low, as slow as 0.5 phenotypic standard deviations
per generation for a population with Gaussian fitness sur-
face parameters , , and .2 ˜ñ p 6.5 d p 0.8 W p 2

Constraints on Multivariate Traits

The analyses above assume that selection is concentrated
on a single trait, but individual fitness in real populations
is generally determined by multiple correlated traits. We can
show that the three basic formulations of effective evolu-
tionary constraints derived above all apply to multivariate
traits with the parameters reinterpreted in mathematically
sensible ways. We illustrate these extensions by deriving
expression (9) for constraints associated with asymptotic
persistence in a changing environment. Derivations corre-
sponding to consistent growth (eq. [6]) and avoiding low
population size (the nonstandardized version of eqq. [8])
are provided in appendixes B and C, respectively.

We assume that individual absolute fitness now depends
on a multivariate trait vector z: W(z) p F exp �(1/2)(z �

, where the prime indicates transpose. The′ �1v) W (z � v)t t

vector is the multivariate optimum phenotype at time t,vt

and the positive-definite matrix W describes the pattern of

multivariate selection, which we assume is constant. The
parameter F is, as before, the fitness of an individual with
the optimal phenotype. This Gaussian fitness function di-
rectly extends the one used above for a univariate trait.

If z has a normal distribution at time t with mean z̄t

and phenotypic covariance matrix P, then the mean fit-
ness/finite growth rate is

1 ′ �1ˆ¯ ¯ ¯W(z ) p F exp � (z � v ) V (z � v) , (11)t t t t t2 
where and . ( denotes�1 1/2ˆV p W � P F p F(FV WF) FMF
the determinant of a matrix M.) The population grows
whenever .W 1 1

Under the above assumptions, the one-generation mul-
tivariate evolutionary response to selection is ¯Dz pt

, where G is the additive-genetic covariance¯ ¯z � z p Gbt�1 t t

matrix underlying the distribution of z and b pt

is the selection gradient vector (Lande 1979).�1 ¯V (v � z )t t

The principal components of G are genetically uncorre-
lated directions in phenotype space (eigenvectors), and
each direction is associated with an amount of additive-
genetic variance (an eigenvalue). The component associ-
ated with the greatest amount of variation has been called
the “evolutionary line of least resistance,” since selection
of a given strength applied in that direction would produce
the largest evolutionary response (Schluter 1996).

For evolutionary constraints, our interest is, rather, in
the principal components of G with the smallest amounts
of genetic variation, since in these directions, selection
could yield too little evolution. They are the evolutionary
lines of highest resistance and, if directional selection is
independent of variation, also represent a population’s
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greatest vulnerability to extinction. Let the eigenvalues of
G arranged in decreasing order be 2 2 2j ≥ j ≥ … ≥ j ≥A1 A2 An

, with associated unit eigenvectors (PC loadings) g1, g2,0
…, gn. Direction g1 is the evolutionary line of least resis-
tance (i.e., Schluter’s gmax), but a population’s slowest
adaptive responses will occur when selection of a given
strength is applied in direction gn.

Now consider the demographic consequences of a pop-
ulation in a changing environment. To be concrete, let the
optimal phenotype at time t be , where the elementsv p tkt

of k are the rates of change for each component of the
multivariate optimum.

From equation (11), the finite growth rate at time t is

1 ′ �1ˆ¯ ¯ ¯W(z ) p F exp � (z � tk) V (z � tk) . (12)t t t2 
Iterating gives�1¯ ¯ ¯Dz p Gb p GV (tk � z ) z p (I �t t t t

, where I is the�1 t �1 t �1¯GV ) z � tk � [I � (I � GV ) ]VG k0

identity matrix. We have

�1z̄ r tk � VG k (13)t

as , so asymptotically, the growth rate (eq. [12]) ist r �
constant, .′ �1 �1ˆW p F exp [�(1/2)k G VG k]�

Long-term persistence is assured, provided . ThisW ≥ 1�

is equivalent to requiring

′ �1 �1 2ˆk G VG k ≤ ln F . (14)

The (scalar) quantity is bounded above by′ �1 �1k G VG k
, where n2 is the largest eigenvalue of V, is the2 2 4 2k n /j jAn An

smallest eigenvalue of G, and is the′ 1/2FkF p (k k) p kkk
length of the vector k. Substituting this upper bound into
the left-hand side of equation (14) shows that 2j ≥An

is a sufficient condition for asymptotic per-2 2 1/2ˆFkF(n / ln F )
sistence in a linearly changing environment.

This demonstrates that, with and n2 defined appro-FkF
priately, the threshold (eq. [9]) can be used to characterize
demographic constraints in a changing environment when
fitness and population growth are governed by multivar-
iate traits. That is, if any principal component of G has
variance (eigenvalue) less than , the2 2 2 1/2ˆj p FkF(n / ln F )A, crit

population lacks the capacity to respond to some patterns
of selection induced by environmental change without be-
coming extinct. Interpretation of is straightforwardFkF
when components of phenotype z are measured using the
same units, in which case is the overall speed of move-FkF
ment of the optimum in multivariate space. This simplicity
breaks down, however, if components have different units
(e.g., mm and g). In that case, phenotypes should be mean
or variance standardized first, as we now discuss.

Normalized versions of the constraint criteria can be

obtained by introducing a standardization matrix. For ex-
ample, the diagonal matrix N with entries equal to the
square roots of the diagonal entries of P can be used to
standardize values relative to phenotypic variances:

, , , and�1 �1 �1 �1˜ ˜˜̄ ¯Dz p N Dz v p N v V p N VN H p
. These standardizations are equivalent to those�1 �1N GN

discussed by Hansen and Houle (2008), who used element-
wise operations instead of standard matrix and vector
multiplication.

The matrix H is a sort of heritability matrix, with her-
itabilities of individual traits along the diagonal. Con-
straints (10) would then apply, with referring to the2hcrit

smallest eigenvalue of H, referring to the largest eigen-2ñ

value of , , and�1 �1˜ ˜Ṽ d p kN dk FkF p kN kck p
, where .�1FkFkN ck c p k/FkF

Parallel results and interpretations apply, given other
standardization schemes. For example, in defining the ef-
fective dimensionality of multivariate evolution, Kirkpat-
rick (2008) considers traits standardized by their means,
in which case N is a diagonal matrix with the mean values
along the diagonal. He observes that the matrix H can be
factored into the product ERE of nondimensional matri-
ces, where E is a diagonal matrix containing the evolv-
ability of each trait (Houle 1992) and R is the matrix of
additive-genetic correlations. Constraints are present if any
eigenvalue of this matrix product is less than ,IA, crit

computed using equation (10b) with mean-standardized
values.

Another way to connect multivariate constraints to the
univariate formula (9) is to note from equation (13) that
for large enough t, . That is, a population adaptingz ≈ tkt

to an optimum changing in a fixed direction k will ulti-
mately evolve only in that direction. Thus, the response
to selection is asymptotically one-dimensional, and the
additive-genetic variance relevant for adaptation along this
line is the conditional genetic variance along k (Hansen
et al. 2003; Hansen and Houle 2008), , where′ �1 �1(c G c)

is a unit vector pointing in the direction thec p k/FkF
optimum moves. By equation (9), persistence is assured
if this conditional genetic variance exceeds the critical
value , where now quantifies2 2 1/2 2 ′ �1ˆFkF(n / ln F ) 1/n p c V c
the strength of stabilizing selection applied along the as-
ymptotic direction of evolution.

Discussion

To evolve, a population obviously must persist, and this
fact can restrict capacity for adaptive evolution. We have
developed formulas to quantify how the potential for evo-
lution is constrained by the need to avoid extinction. These
demographic constraints are expressed as threshold
amounts of additive genetic variance below which popu-
lations are in effect constrained. The thresholds depend
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on features of the adaptive landscape that can be estimated
without genetic analysis, and thus they provide a priori
standards against which measured additive genetic varia-
tion can be compared.

Our demographic constraints have somewhat different
interpretations than absolute constraints (Houle 2001;
Mezey and Houle 2005), which are caused by an absence
of genetic variation. Any extant population may be subject
to an absolute constraint that holds its mean fitness below
what it hypothetically would be were the constraint absent.
In contrast, the demographic constraints derived above
describe patterns of selection that could not have been
experienced by the population in the past and predict
patterns of selection the population could not survive in
the near future, given our working assumptions.

It is easier to interpret and generalize amounts of var-
iation on a standardized scale. Both variance and mean
standardizations are informative; however, we have re-
stricted our interpretations of existing data to a variance-
standardized scale and therefore to critical heritabilities
because previous estimates of the width of stabilizing
selection functions have been reported on a variance-
standardized scale.

Studies of wild and laboratory populations have found
that heritabilities for fitness-related traits vary widely, with
an average value of about 0.2–0.3 (Mousseau and Roff
1987; Houle 1992). This average is comfortably above the
ballpark threshold values computed for our three main
scenarios under many—but not all—conditions (figs. 1–
3). However, almost 20% of fitness-related heritability es-
timates are !0.1 (fig. 5 of Mousseau and Roff 1987). This
means that adaptive evolution in a substantial fraction of
populations might be restricted by demographic require-
ments. Indeed, Janzen (1994) estimated for the2h p 0.1
threshold temperature of sex determination and predicted
that it will prove inadequate for maintaining viable sex
ratios in a population of painted turtles (Chrysemys picta),
given projected increases in climatic temperatures. Simi-
larly, Willi and Hoffman (2008) used stochastic simula-
tions based on the study by Bürger and Lynch (1995) and
parameter estimates derived from lab-reared populations
of Drosophila burchii to predict that a heritability !0.1 in
heat-knockdown resistance would not be enough to pre-
vent extinction in populations of size 20 in a warming
environment.

It has long been recognized that the potential for adap-
tive evolution suggested by heritabilities of isolated traits
may be severely overstated as a result of genetic correla-
tions among fitness-related traits (Dickerson 1955; Crow
1970). Empirical studies have found that natural selection
often targets less variable combinations of traits (Etterson
and Shaw 2001; Blows et al. 2004). When fitness depends
on multiple correlated traits, the genetic capacity to re-

spond to selection is best described by the eigenvalues of
the G matrix (or a dimensionless version of it). Absolute
evolutionary constraints are present in a population if its
G matrix has a zero eigenvalue since the population can
fail completely to respond to directional selection (Kirk-
patrick and Lofsvold 1992). That is, there are multivariate
directions in which the population cannot evolve.

Unfortunately, estimation and statistical testing can
never establish the absence of variation, including zero
eigenvalues. The best that can be done is to demonstrate
that an eigenvalue is likely to be smaller than some positive
value. Even doing this has proven highly problematic in
practice as a result of poor precision, downward bias, and
dubious assumptions of procedures used to estimate the
smallest eigenvalues (Houle 2001; Mezey and Houle 2005;
Hine and Blows 2006; Kirkpatrick 2008; Meyer and Kirk-
patrick 2008). The demography-based constraint criteria
developed here may alleviate some of those practical issues
by providing critical genetic variances 10 that can be re-
jected by statistical tests. When estimates of small eigen-
values are downward biased, then if all eigenvalues exceed
a given threshold, one can be confident that the population
is not constrained by that aspect of demography.

Estimates show, and neutral evolution models predict,
that G matrices often have at least some very small ei-
genvalues (Kirkpatrick et al. 1990; Mezey and Houle 2005;
Griswold et al. 2007), which implies that it may be com-
mon for evolution of multivariate traits to be channeled
primarily along just a few dimensions (Schluter 1996;
McGuigan et al. 2005). Likewise, some studies that esti-
mate dimensionality (matrix rank) directly have been un-
able to reject the hypothesis of reduced rank (Kirkpatrick
and Meyer 2004; Hine and Blows 2006). In a survey of
several data sets, Kirkpatrick (2008) noted that the effective
number of dimensions of multivariate genetic variation
(defined by him as the sum of the eigenvalues of G divided
by the largest eigenvalue) consistently lies between 1 and
2.

In theory, a reduced-rank matrix must have zero ei-
genvalues, so a G matrix of low dimension should indicate
absolute genetic constraints. However, statistical ap-
proaches that utilize reduced-rank estimates of G are not
well suited for revealing the nature of absolute constraints
because they aim to account maximally for patterns of
variation and covariation using as few dimensions as pos-
sible. By design, they “often discard information about
phenotypic dimensions for which there is a small but non-
zero amount of genetic variation” (Kirkpatrick and Meyer
2004, p. 2305). Thus, an estimate of low dimensionality
need not imply a long-term adaptive constraint if the true
absolute size of any statistically undetected eigenvalue of
G is sufficiently large to forestall extinction. In that case,
virtually any amount of evolutionary change would be
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possible, given selection and enough time. Our consid-
eration of the demographic consequences of adaptation
shows that even a G matrix of full rank does not guarantee
the absence of evolutionary constraints.

The ability to estimate small eigenvalues of G with sta-
tistical confidence is limited by the number of families one
can accommodate in an empirical study (Mezey and Houle
2005). A partial way to overcome this obstacle is to use
the fact that the eigenvalues of the phenotypic covariance
matrix P dominate the eigenvalues of G (app. D; for an
empirical demonstration, see McGuigan and Blows 2007).
Thus, if P has an eigenvalue smaller than a given critical
value, then so must G. Because sample size rather than
family number limits statistical precision of estimates of
P, it may be possible to infer, on the basis of the eigenvalues
of P, that G has an eigenvalue that is truly smaller than
a given threshold rather than just statistically undetectable.
This approach will, however, be inconclusive about con-
straints if all eigenvalues of P are above the threshold.

The eigenvectors associated with zero eigenvalues form
a basis for the null space of a matrix (Strang 1988). Applied
to G, the null space delimits directions that are inaccessible
to evolution (Kirkpatrick and Lofsvold 1992). By extension,
we define the nearly null space of G as the multivariate
space spanned by eigenvectors associated with eigenvalues
that are consistent with demographic constraints. While
these directions may allow some evolution, there is sub-
stantial risk that the evolution may be undone by extinction,
the ultimate limitation.

Our models of population dynamics assume density-
independent growth. Thus, our formulas are most relevant
when applied to populations well below carrying capacity,
as for many of those facing the prospect of extinction
through environmental change or when colonizing a new
habitat. In that case, our formulas will describe constraints
most accurately for populations with density-independent
growth up to a ceiling (e.g., Lande 1993) but should also
provide excellent approximations for populations subject
to negative density dependence at all sizes. For populations
that experience strong density dependence at low numbers
(such as Allee effects), the expressions represent lower
bounds for constraints.

Our formulas are probably not applicable to strongly
regulated populations that are near carrying capacity. Evo-
lutionary constraints in such populations are determined
chiefly by consequences of the abundances at which they
are regulated (for mutational input, random genetic drift,
and structuring of selection) rather than by extinction. The
effects of population size on adaptation are often analyzed
assuming soft selection (see Wallace 1970) such that the
nature of density regulation is unaffected by evolution. By
comparison, our focus on populations well below carrying
capacity and in which adaptive evolution directly determines

population dynamics (i.e., hard selection) highlights how
extinction can factor into genetic constraints.

The constraint formulas we derived rely on many other
genetic and demographic simplifications. These include
assuming that individual fitness is a Gaussian function of
phenotype and that populations are normally distributed.
Our models also ignore the effects of drift, selection, mu-
tation, and linkage on the evolutionary dynamics of
additive-genetic variation and covariation. They assume
the absence of demographic and environmental stochas-
ticity. Some of these assumptions might be valid, or ap-
proximately so, for some populations. For example, many
real fitness functions can be locally approximated by Gaus-
sian fitness functions. Other assumptions that are almost
certainly not met we would expect to increase the severity
of constraints above the levels implied by our formulas.
For example, increases in the strength of selection and
drift due to any reductions in population size should erode
genetic variation available for evolution and thus slow the
rate of adaptation, at least in the short run. Similarly,
environmental and demographic stochasticity can under-
mine the persistence of populations that would otherwise
be expected to persist. To the extent that these genetic and
demographic features hinder adaptation and persistence
relative to our biologically simplistic models, the criteria
we have derived should understate the constraints imposed
by population dynamics. However, further work is needed
to clarify how violating these and other key assumptions,
such as the multivariate normal distribution of breeding
values, would affect our results.

This study explores a new direction within evolutionary
demography, an emerging field that considers the feedback
between evolutionary and population dynamics (reviewed
in Day 2005). Previous work in “evo-demo” has consid-
ered the influence of evolution on population and com-
munity dynamics (e.g., Kinnison and Hairston 2007; Willi
and Hoffman 2008) or how demographic context influ-
ences patterns of selection (e.g., Metcalf and Pavard 2006).
Our study, by comparison, demonstrates how demography
can limit the genetic potential of populations for adaptive
evolution.
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APPENDIX A

Ballpark Gaussian Fitness Surface Parameter Estimates

Estimates of the Gaussian fitness surface (eq. [1]) can be
obtained from phenotypic selection studies that jointly
estimate the parameters n2, d, and . To obtain roughW
empirical values, we used Estes and Arnold’s (2007) joint
estimates of variance-standardized and that they ex-2 ˜ñ d
tracted from the database on phenotypic selection studies
compiled by Kingsolver et al. (2001). We further narrowed
those to cases indicating stabilizing selection regardless of
statistical significance. Stinchcombe et al. (2008) found
that about 80% of the studies surveyed by Kingsolver et
al. (2001) underestimate gamma, the stabilizing selection
gradient, by a factor of 2, but they did not identify those
studies. To compensate, we created a worksheet of the
pared-down estimates and doubled each original gamma
estimate with probability 0.8. Our ballpark values were
obtained from recalculating the worksheet many times and
noting median values based on the randomly corrected
parameters. Changing the doubling probability had little
effect on the results.

APPENDIX B

Multivariate Constraints Consistent with Growth

In this appendix, we show that equation (6) can be used
to define evolutionary constraints consistent with popula-
tion growth in a constant environment following a shift in
the optimum when fitness is determined by a multivariate
trait. We use the same model as that leading to equation
(11) but assume that the phenotypic optimum is fixed,

. Let denote the vector from the optimum¯v p v d p z � vt t t

to the population mean and its length. Growth is as-kd kt
sured, provided that or,′ �1ˆW p F exp [�(1/2)d V d ] ≥ 1t tt

equivalently, . The quadratic form on the′ �1 2ˆd V d ≤ ln Ft t

left-hand side is bounded below by , where n2 is the2 2kd k /nt

largest eigenvalue of V, so a necessary condition for growth
is for all t. That is, to avoid declines, a2 2 2ˆkd k ≤ n ln Ft

population must never stray more than a distance
from the optimum phenotype. It follows from2 2 1/2ˆ(n ln F )

the one-generation recursion that�1¯Dz p Gb p �GV dt t t

so that the condition necessary for growthkd k ≤ kd kt�1 t

reduces to .2 2 1/2ˆkd k ≤ (n ln F )0

Consider next the response to selection. We measure
the overall size of evolutionary change after t generations
by . The one-generation recursion for the¯ ¯R p kz � z kt t 0

mean phenotype suggests that the smallest conceivable
evolutionary response occurs when selection targets the
direction of the smallest eigenvalue of G, , governed at2jAn

its weakest strength , where n2 is the largest eigenvalue21/n
of V. This will occur when dt is an eigenvector of G cor-
responding to and simultaneously an eigenvector of V2jn

corresponding to n2. Given this perfect storm of circum-
stances, , and thus2 2¯Dz p Dd p �j /n d d p (1 �t t An t t

. Since , the magnitude of evo-2 2 t ¯ ¯j /n ) d z � z p d � dAn 0 t 0 t 0

lutionary response after t generations in this extreme case
is . This shows that substantial2 2 tR p [1 � (1 � j /n ) ]kd kt n 0

evolution can occur even in this most prohibitive scenario
if the initial distance from the optimum, , is largekd k0

enough. However, the requirement of growth necessary
constrains this distance to be less than , and2 2 1/2ˆ(n ln F )
hence, the overall evolutionary response is bounded:

. If this upper bound is2 2 t 2 2 1/2ˆR ≤ [1 � (1 � j /n ) ](n ln F )t n

itself below the minimum amount of response recognized
as biologically nontrivial, Rmin, then evolution can be con-
strained. It follows that constraints are present if any ei-
genvalue of G is less than the critical value defined in
equation (6), with n2 the largest eigenvalue of V p W �

.P

APPENDIX C

Multivariate Constraints Consistent with
Avoiding Small Numbers

Here we show that the nonstandardized version of equa-
tions (8) applies to constraints for multivariate traits im-
posed by the requirement that a population avoid critically
low sizes after a single shift in the optimum. If a population
can manage this when selection is at its least effective and
evolutionary responses are at their slowest, then there are,
in essence, no evolutionary constraints. Otherwise, there
are. Recalling the results of appendix B, we have

2t21 jAn ′ �1ˆW p F exp � 1 � d V d0 0t 2[ ( ) ]2 n

2t2 2kd k j0 Anˆp F exp � 1 � .
2 2( )2n n 

The second equality holds because the worst case scenario
assumes that d0 is an eigenvector of V�1 for its smallest
eigenvalue . This gives21/n

t�1 2it�12 2kd k j0 AntˆN p N W p N F exp � 1 �� �t 0 0i 2 2[ ( ) ]
ip0 2n nip0

2 2 2 2tkd k 1 � (1 � j /n )0 Antˆp N F exp � .0 2 2 2 2[ ]2n 1 � (1 � j /n )An
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Note too that the time tR required to evolve growth as-
suming satisfies (cf. eq. [8b]). From theseW ! 1 W p 10 tR

considerations, it can be shown that the minimum amount
of additive-genetic variance consistent with avoiding quasi
extinction can be determined from equations (8) using
nonstandardized versions of the parameters and substi-
tuting the smallest eigenvalue of G for h2 with the2jAn

understanding that n2 is the largest eigenvalue of V p
and is the initial distance from the pop-W � P d p kd k0 0

ulation mean to the optimum. If any principal component
of G has additive-genetic variance (eigenvalue) smaller
than this minimum, then a population’s capacity to adapt
is effectively constrained since there are situations in which
it would reach population sizes so low as to face high risks
of extinction.

APPENDIX D

Eigenvalues of P versus Those of G

We show here that the eigenvalues of P dominate those
of G, generalizing Pease and Bull (1988), who proved that
if P has a zero eigenvalue, then so must G. Let lP be an
eigenvalue of P with unit eigenvector v. Recalling that

, . Since E is posi-′ ′ ′P p G � E l p v Pv p v Gv � v EvP

tive semidefinite, (Strang 1988, p. 339), and so′v Ev ≥ 0
. But , where lAn is the smallest ei-′ ′l ≥ v Gv v Gv ≥ lP An

genvalue of G since v is a vector of unit length (Strang
1988). Thus, ; that is, every eigenvalue of P isl ≥ lP An

bounded below by at least one eigenvalue of G. A similar
argument proves that no eigenvalue of G can be greater
than all eigenvalues of P.
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