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The simplified mechanism of the axonal sodium channel also has two discrete shuf
states and one open state; if inactivation of the channel can occur without channel opening
the reaction must be written in a cyclical form:

Open

1
\Inactivated

Some other examples are considered below (see Sections 4 and 13).

The usual procedure would be first to postulate a plausible mechanism, then to use the
law of mass action to predict its expected kinetic and equilibrium behaviour, and finally to
compare these predictions with experimental observations. Such predictions concern, of
course, the average behaviour of the system.

If we are recording from a large number of molecules (ion channels, in the present
case), then it is only the average behaviour that can be observed. For example, if the transition
rates between the various states are constant (do not vary with time), then the time course
of the mean current, I(#), through the ion channels will be described by the sum of k - | :
exponential terms, where k is the number of states in the system (see examples above). Thus,

I(t) = I(®) + wie™™ + wye 2 4 ... @

[Note that exp(—#7) is often used as an alternative way of writing e~“".] For any specified
mechanism, the amplitudes w; and the time constants ; can be calculated by the methods
given, for example, by Colquhoun and Hawkes (1977), as can the predicted noise spectrum,
A ‘cookbook’ approach to programming such calculations is provided in Chapter 20 (this
volume). The values of 7; each depend on all of the rate constants in the mechanism, and
they have, in general, no simple physical significance (although in particular cases they may
approximate some physical quantity such as mean open lifetime or mean burst length).

If, on the other hand, we record from a fairly small number of ion channels, the
fluctuations about the average behaviour become large enough to measure, and Katz and
Miledi (1970, 1972) showed how these fluctuations (or ‘noise’) could be interpreted in terms
of the ion channel mechanism. Suppose, for example, that there are N = 10° ion channels
and that, at equilibrium, there are 1000 channels open on average. The probability that an
individual channel is open at a given moment is p = 1000/10° = 0.001, so the standard
deviation of the number of open channels is given by the binomial distribution as [Np(1 —
p)]"? = 31.6. The number of channels that are open at equilibrium is therefore not constant
at 1000, but is 1000 = 31.6, where the standard deviation reflects the random fluctuations
in the number of open channels from moment to moment (see examples in Colquhoun, 1981,
for an elementary discussion).

The law of mass action states that the rate of any reaction is proportional to the product
of the reactant concentrations. The proportionality constant is described as a ‘rate constant’
(a, B, k_y, etc.) and is supposed to be a genuine constant, i.e., not to vary with time. This
is not necessarily true, however; for example, the channel-shutting rate constant, o, is known
to be dependent on membrane potential (for muscle-type nicotinic receptors), so it will stay
constant only if the membrane potential stays constant (i.e., only as long as we have an
effective voltage clamp). Furthermore, for an association reaction with rate constant ki
(dimension M~'s™"), the transition rate (dimensions s~") will be k. x5 where x, is the free
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Iscrete shut ligand concentration; this will be constant only if neither the ligand concentration nor the

€l opening, faie constant varies with time. In many sorts of experiments there is a considerable risk of
ransient concentration changes that would violate this condition. Of course, it is still possible
o solve the kinetic equations even if the transition rates are not constant, as long as their
 time course is known, but this adds considerably to the complexity (we no longer get sums
of exponential terms) and is not considered here.
We have already mentioned that the current, /(z), is only an average value; there will
be fluctuations about this average as a result of moment-to-moment random variations in ‘
3  the number of ion channels that are open. The smaller the number of ion channels that we il
record from, the larger (relative to the mean current) the fluctuations will be. When we
: ] record from a single ion channel, the current varies in a step-like fashion between (in the
}0 use the simplest cases) two values, fully open and fully shut (Neher and Sakmann, 1976; Hamill et
{ﬁnally to al, 1981). The current is effectively never equal to its equilibrium value; it is always zero
jicern, of Sy or 100%. Equilibrium can be defined only over a long time period; the term “fraction of
| 1 channels open at equilibrium” must be replaced by “the fraction of time for which the single
?pr§s§nt q channel stays open,” a quantity that can be measured accurately only over a period of
i‘eanSItlon ] observation long enough to contain many open and shut intervals. A long stretch of record
€ course

E. . isneeded because we are looking at a single molecule, and its behaviour is, of course, random.
=

1.2. Rate Constants and Probabilities

In ordinary chemical kinetics, a rate constant describes the rate of reaction; for example,

a in equation 1 or 2 describes the rate of the channel-shutting reaction. The transition rates
(e.g., k_; or k. x,) have the dimensions of frequency (s™'), and they can be interpreted as
frequencies. For example, in equation 1, the number of shuttings that occur per second (of
individual molecules) is simply o multiplied by the fraction of channels that are in the open
state. At equilibrium, the number of shuttings per second (o times the fraction of channels
that are open) will be equal, on average, to the number of openings per second (B’ times
the fraction of channels that are shut). This frequency interpretation of rate constants is
described in more detail by Colquhoun and Hawkes (1994) and is illustrated in Sections 4.6
(Fig. 6) and 9.1.

However, when we look at a single ion channel, we see that the shutting takes place
at random, so the rate constant must be interpreted in a probabilistic way: « is a measure
of the probability that an open channel will shut in unit time (though, because a has dimensions
of s™!, it is clearly not an ordinary probability, which must be dimensionless). Roughly, we
can say that for a time interval As,

Prob(open channel shuts during Az) = aA¢

This is dimensionless, but it is still not a proper probability because it can be greater
than unity. Also, this definition does not make clear whether or not several openings and
shuttings are allowed to occur during the time interval Az It turns out that the proper way
to write this definition can be arrived at by introducing a ‘remainder term,” which we do
not specify in detail but which has the property that it disappears (relative to Af) as At
becomes very small. This term would describe, for example, the possibilities of several
transitions occurring during Az, which clearly becomes negligible for small A¢. This remainder
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given above. The advent of single-channel recording has provided perhaps the strongest and
most direct evidence for the existence of discrete states of large protein molecules. The
switch between shut and open states, or between open states of different conductance, is
very fast, with no detectable intermediate states; this is exactly what is expected on the basis
of the classical postulates of chemical kinetics. Yet, ironically, it is these same observations
that have caused these postulates to be questioned.

It has been suggested that, because proteins can exist in an essentially infinite number
of conformations, it is inappropriate to postulate a small number of discrete states, and some
sort of fractal or diffusion model should be preferred (Liebovitch et al., 1987; Lauger, 1988;
Milhauser ef al., 1988; Liebovitch, 1989). Such models usually predict that the probability
of a transition occurring in unit time will not be constant and so differ fundamentally from
the Markov model. There are several reasons to think that such approaches are not, at present,
likely to be very helpful.

The most important reason is that the experimental evidence shows Markov models to
fit the data better than the alternatives (as formulated up to now); see, for example Korn
and Horn (1988), McManus et al. (1988), Sansom et al. (1989), McManus and Magleby
(1989), Petracchi ef al. (1991), and Gibb and Colquhoun (1992). An example of this evidence
is given later (see Section 10.3).

A second reason is that the theoretical argument is not entirely convincing. Fractals
stem from mathematics rather than physics, so it is far from clear what they can tell us about
the real world (the same comment applies to catastrophe theory, which, at the height of its
fashion, was said to “explain” almost every biological phenomenon from riots to action
potentials but is now almost forgotten). Diffusion theory, on the other hand, has a sound
physical basis and must be taken more seriously. Clearly, a protein (or, indeed, much smaller
molecules) can exist in an infinite number of conformations, but this does not preclude the
existence of a limited number of states, or conformations, that are much more stable than
the others (e.g., Lauger, 1985, 1988). Such “discrete” states are not, of course, fixed and

stationary. All the parts of the molecule have thermal motion, much of it very rapid (on a
picosecond time scale), so there is continuous fluctuation around the average structure of
the “discrete” state, but if these fluctuations are of no great functional significance (e.g.,
have only a small effect on channel conductance), then there is no need to incorporate them
into the model. To attempt to do so merely increases vastly the number of parameters to be
estimated without contribution to the usefulness of the model. In fact, the fractal formulation
does not attempt the impossible task of estimating all the relevant parameters but, on the
contrary, attempts to- describe the data with only two, neither of which has any obvious
physical significance.

In summary, the simple forms of the fractal argument that have been used fail to fit the
data adequately in many cases. Furthermore, even if it were true that an infinite (or at least
very large) number of states should be considered, it would be impossible to estimate from
experimental data parameters with genuine physical significance. Just as in all other science,
the mechanisms with a few discrete states that we use are undoubtedly approximations, but
they have parameters that can be estimated, have real physical significance, and they have
proven predictive value (see Colquhoun and Ogden, 1986; Horn and Korn, 1989).

2. Probabilities and Conditional Probabilities

The definitions just given are in terms of probabilities and conditional probabilities. It
may be useful at this stage to illustrate exactly what these terms mean. Consider the behavior
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Figure 1. Ilustration of the meaning of probabilities and
conditional probabilities (see text).

of eight individual ion channels illustrated in Fig. 1. Imagine that these eight channels behave
in a manner typical of a much larger number of channels so that the ratios given are good
estimates of the true or long-term average values of the probabilities. One possible example

of their behaviour is shown in Fig. 1.
Only one channel of the eight is both open at ¢ and shut at ¢ + At, so

Prob(open at ¢ and shut at £ + Af) = (number open at ¢ and shut at ¢ + Af)/(total number)
= 1/8.

However, the conditional probability, Prob(shut at ¢ + At | open at 1), although it has
the same numerator, has a different denominator;, it is defined with respect to the population
of channels that obey the prior condition, i.e., those that were open at 7. These are three in
number (channels 4, 5, and 6), so the conditional probability is

Prob(shut at ¢ + At|open at 1) = (number open at ¢ and shut at ¢ + Af)/(number open at f)
= 1/3.

This is an example of the general rule of probability that for any events A and B,

Prob(B|A) = Prob(A and B)/Prob(A)
Prob(A and B) = Prob(A) Prob(B|A)

In this case, A is ‘open at r: Bis ‘shutats + At So in this example,

Prob(B|A) = (1/8)/(3/8) = 1/3
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In general, if A and B are independent, then the probabilities of B cannot depend on
whether A has occurred or not. Therefore, Prob(B | A) can be written simply as Prob(B),

nd equation 9 reduces to the simple multiplication rule:

Prob(A and B) = Prob(A) Prob(B) (10)

3, The Distribution of Random Time Intervals

31, The Lifetime in an Individual State

. We are interested in the length of time for which the system stays in a particular state,
for example, the open state. These lengths of time are random variables, and the form of
their variability can be described by a probability distribution. Time is a continuous variable,
% we wish to find the probability density function (pdf) of, for example, open lifetimes.
iThis is a function f(1), defined so that the area under the curve up to a particular time f
fepresents the probability that the lifetime is equal to or less than t. Thus, the pdf can be

found by differentiating the cumulative distribution (or distribution function) Prob(open
lifetime < 1), which is usually denoted F' (). The pdf is thus

f(n = lim [Prob(lifetime is between t and ¢ + Af)/At] 11)
At—0

A number of approaches to the derivation of this distribution are possible. We shall
first derive it directly and then mention some other approaches. Take, as an example, the
Jength of time for which a channel stays open. First define a probability, which we shall

‘denote R(), as
R() = Prob(channel stays open throughout the time from O to 1) (12)

[t is worth noting that this is a rather different sort of probability from that used in analyzing
relaxations Or noise. In these cases, we are interested, for example, in the probability that a
| channel is open at time ¢, given that it was open at r = 0, regardless of whether the channel
may have shut one or more times in between. In reliability theory, the sort of probability
| defined in equation 12 is known as the reliability function; it represents the probability that
a system remains operational throughout the period O to £.
Now, from equation 5 we know that

Prob(shut at ¢ + At|open at 1) = alt + o(AD), (13)

where o is the ordinary rate constant for the shutting reaction (or, more generally, the sum
of the rate constants for all routes by which the open channel can shut). The channel obviously
must either shut or not shut during Az, so the probabilities for these two alternatives must
add to unity. Hence,

Prob(channel does not shut between ¢ and 7 + At|open at H=1-—alr— o(A), (14)
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From equations 9 and 12, we can now define

R(t + Af) = Prob(channel stays open throughout the time from 0 to ¢ + Af)
= Prob(open throughout 0, ) - Prob(open throughout ¢, ¢ + At|open
throughout 0, 7)

does not depend on the whole history from 0 to ¢ but only on the fact that the channel is
open at time ¢. Thus,

Prob(open throughout ¢, t + At|open throughout 0, 7) (16)
= Prob(open throughout ¢, ¢ + Atﬂopen at 7)

But equation 16 is just the probability that was derived in equation 14, and the first probability
in equation 15 is simply R(#), so equation 15 can be written as ’

R(t + A = RO[1 — aAt — o(A1)] (17)

R+ A) —Re) _ (A
A VE— R@[“ Y ]

If we now let At — 0, the left-hand side becomes the first derivative of R(¢), and the remainder
term disappears, so

dR(1)

e —oR(D).

As long as « is a constant (not time dependent), the solution of this equation is
R(t) = e™™ (19

because R(0) = 1 (i.e., channel cannot move out of the open state in zero time).

Next, we notice that if the channel stays open throughout the time from 0 to ¢, its open
lifetime must be at least ¢. This is the crucial step that relates the argument to the distribution
of open times. We can therefore write

R(#) = e™** = Prob(channel stays open throughout time from 0 to )

= Prob(open lifetime > f)
and therefore,

Prob(open lifetime =) = 1 —R() = 1 — ¢~ = F(?)
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This defines the cumulative distribution, F(#), of open-channel lifetimes. The required pdf
for the open-channel lifetime is the first derivative of this, i.e.,

£ty = dF(e)/de = —%z - o

 [for times less than zero, f{z) = 0].

This pdf is described as an exponential distribution, or exponential density, with mean
lfo. It is a simple exponentially decaying curve. This is quite different in shape from the

* well-known Gaussian or “normal” distribution: rather than being a symmetrical bell-shaped

curve, it is an extreme example of a positively skewed distribution with the mode (maximum)
att = 0 (compare with the Gaussian curve for which the mode is the same as the mean).
The exponential distribution has the same sort of central role in stochastic processes as the
Gaussian distribution has in large areas of classical statistics.

For any pdf, f(z), the mean is given by

mean = Jm tf(t)dt

For nonnegative random variables, {r) = 0 when ¢ < 0, and the lower limit of this integral
can be taken as zero; then integration by parts yields a useful alternative formula that is
sometimes easier to calculate. Thus,

mean = Jm Hf()dt = FJ R(t)dt

0 0

which, in the present example, is 1/a, the mean open lifetime.

3.2. Another Approach to the Exponential Distribution

An open channel must overcome a certain energy barrier before it can flip to a shut
conformation. The energy needed for this purpose comes from the random thermal energy
of the system. The bonds of the channel protein will be vibrating, bending, and stretching,
and much of this motion will be very rapid, on a picosecond time scale. One can imagine
that each time the molecule stretches, it has a chance to surmount the energy barrier and
flip shut. Each “stretch” is like a binomial trial with a certain probability, p, of success (i.e.,
shutting) at each trial. Since the stretching is on a picosecond time scale, but the channel
stays open for milliseconds, clearly, the chance (p) of success at each trial must be small,
and a large number (N) of trials will be needed before the channel shuts. Now, when N is
large and p is small, the binomial distribution approaches the Poisson distribution. The
Poisson distribution gives the probability of there being no successes (i.e., no shutting) in
time ¢ as e~*, where « is the mean frequency of successes in unit time. If there is no success
at shutting in time #, then the open lifetime must be greater than ¢, and, since we have found
that the probability of this is e™*, we are led directly to equation 20 and hence to the

exponential pdf.
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3.3. Generalizations

The above argument was mostly concerned with the open time, but clearly the sar
argument applies to the time spent in any single specified state. For the simplest mechani
(equation 1), therefore, the open time is exponentially distributed with mean 1/a, and
shut time has pdf g(r) = B’ e P", i.e., it is exponentially distributed with mean 1/B’ for
single channel. If more than one channel contributes to the observations, the shut times yj
appear to be shorter than this, of course. In general, we can, by a similar argument, give
following rule:

Lifetime in any single state is exponentially distributed with mean
= 1/(sum of transition rates that lead away from the state)

we therefore expect Markov behaviour. Such distributions are often described has being
sum of exponential components, just like the macroscopic current in equation 4 (except thd
there will usually be fewer components in the single-channel distributions). It is actuallf
preferable to refer to such distributions as having the form of a mixture of exponentid
distributions (or of exponential densities). Each component can be written in the form ofg
simple exponential distribution, i.e., Aexp(—N\;1), where \; is the reciprocal of the timg
constant, or mean, for the ith component, 7, = 1/\;. Each such distribution has unit area
and to ensure that the final distribution also has unit area, each component is multiplied by
a fraction area, a;, the relative area occupied by the ith component; these are such that the
sum of the areas is unity. Thus, the general form for a pdf that is a mixture of exponentialsis

SO =ake™ + g e 4 ...
or, for n components,
i=n

f® =Y ane™

=]

Eai=1.

The question of the number of components that would be expected in particular cases i
addressed below and discussed more generally in Section 13.5. ‘

It is often of interest to know the distribution of the time spent within any specified st
of states (e.g., all shut states) rather than in a single state. In this case the system can oscillate.
among the various states within the set in a random way; the time that elapses before the
set of states is eventually left will (under our usual assumptions) be described by a mixture
of exponential distributions. The derivation of such distributions is exemplified by the burst-
length distribution discussed in Section 4.7 and by the derivation of the shut-time distribution
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given by Colquhoun and Hawkes (1994). The general solution is given by Colquhoun and
Hawkes (1982), and this is discussed briefly in Section 13.3 and Chapter 20 (this volume).

34. Relationship between Single-Channel Events and Whole-Cell
Currents

It is, of course, no coincidence that, on one hand, the mean current through a large
number of ion channels follows an exponential time course (see equation 4) and, on the
other hand, the random lifetimes of elementary events are described by exponential distribu-
tions. This can be illustrated schematically for the case of the decay phase of a miniature
end-plate current. According to Anderson and Stevens (1973), the decay phase, which follows
a simple exponential time course, is determined by the lifetime of individual open channels.
This is illustrated in Fig. 2b,c. At zero time, a number of ion channels are opened, almost
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Figure 2. a: An exponential distribution of the duration of channel-open times. The histogram shows the
number of openings per bin of 0.5-msec width (R. temporaria, synaptic channels, 50 nM acetylcholine, —80
mV, 8°C; D. C. Ogden, D. J. Adams, and D. Colquhoun, unpublished data). The continuous line shows an
exponential probability density function that has been fitted to the observations (above 0.5 ms) by the method
of maximum likelihood (see Chapter 19, this volume). It has a time constant of T = 3.2 ms, i.e., a rate
constant of N = 1/7 = 312.5 s~'. The estimated exponential probability density function is therefore (see
equation 22) f(r) = Ne™™ = 312.5¢7325 57! the area under this curve is, as for any probability density
function, unity. In the figure, f(r) has been multiplied by the number of observations that lie under the fitted
curve (480) and expressed in units of (0.5 ms)~' rather than s~!, so the continuous curve can be superimposed
on the histogram (see Section 5.1.5 of Chapter 19, this volume). Thus, for example, the intercept at t = 0
is plotted not as f(0) = 312.5 s~! but as 312.5 s~! X 480/2000 = 75 (0.5 ms)~!, where the factor 2000 is
0.5 ms/1s. The horizontal dashed lines show the frequency in each bin as calculated from the continuous
curve. b: Simulated behaviour of five individual channels that were open at the time (+ = 0) at which the
acetylcholine concentration had fallen to zero. Opening is plotted downward. The channels stay open for a
random (exponentially distributed) length of time with a mean of 3.2 ms. ¢: Sum of the five records shown
in b. The total number of open channels decays exponentially (as illustrated in Fig. 3¢c) with a time constant
of 3.2 ms in this example. Reproduced from Colquhoun (1981), with permission.
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synchronously, by a quantum of acetylcholine; the acetylcholine then rapidly disappears s
that a channel, once it has shut, cannot reopen. The length of time for which each channg]
stays open is described by an exponential distribution (Fig. 2a,b), which ensures that the
total current through a large number of such channels will decay along an exponential time
course (Fig. 2¢).

This simple argument works only because the channels were supposed to open almost
simultaneously. This is true, to a good approximation, for synaptic transmission mediated
by nicotinic receptors, but it is far from true for NMDA-type glutamate receptors (Edmonds
and Colquhoun, 1992). In such cases we need also to consider the distribution of the time
(first latency) from the application of the stimulus (e.g., synaptic release of transmitter) fo
the time when the channel first opens. The complications that arise in such cases will be
considered in Sections 9-11.

3.5. Pooling States That Equilibrate Rapidly

If, in mechanism 2, the binding step were very fast compared with the subsequent
conformation change, and so fast that it was beyond the resolution of the experiment, then
the vacant and occupied states would behave, experimentally, as a single (shut) state. This
may be represented diagrammatically by enclosing the two states in a box, thus:

R Ka AR | P AR*
(04

shut ‘state’ (26)

If the binding and dissociation are fast enough, the vacant and occupied states will be
close to equilibrium at all times (even if the system as a whole is not). Therefore,
the transition between them has been labelled only with the equilibrium constant, Ky =
k_y/k\, rather than with the separate rate constants. This procedure has reduced the effective
number of states in the mechanism from three to two (just shut and open). This does not
affect the way we look at the shutting reaction, with rate constant o. However, we have to
be more careful about how we treat the opening reaction. The transition rate from shut to
open can no longer be taken as B, because the “shut state” spends part of its time without
ligand bound (R), and while the receptor is not occupied, opening is impossible. The fraction
of time for which the “shut state” is occupied (in AR) and so capable of opening is simply
the equilibrium fraction of shut states that are occupied, i.e., xo/(xs + K,). Thus, the effective
opening rate constant is

’— XA
B'= B(x—-A + KA> @)

When B’ is so defined, the three-state mechanism in equation 2 becomes formally identical
to the two-state mechanism in equation 1.

The argument just presented is related to the discussion of ‘discrete states’ in Section
1.3. What we refer to here as a discrete state must, since the protein is not stationary, consist
of many conformations (or substates) that interchange rapidly. But if the lifetime of each
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Vidual substate is exponentially distributed, we expect that the overall lifetime will itself

' each chann @mixture of exponentials with Markovian behaviour. If most of the time is spent in one
ures that tate, which may be visited many times, then we expect that the distribution of the overall
me will itself be essentially a simple exponential. This is a result of the following fact,

is derived later, in Section 9.3:
open al
The sum of a random number of exponentially distributed time
intervals is itself exponentially distributed. (28)

hat we mean by a “fast” reaction depends entirely on the time resolution of the experiment
well as on the rates of other steps in the mechanism. What is fast in one context may be
OW in another; further examples are given by Colquhoun and Hawkes (1994).

‘ A Mechanism with More Than One Shut State: The Simple Open
Ion Channel-Block Mechanism

" The two-state mechanism in equation 1 is simple because it is possible to tell which of
e two states the system is in at any moment simply by inspecting the experimental record
{though, in practice, complications would arise if more than one channel were contributing
0 the recording; see Section 8). In most cases of practical interest, there are likely to be
several (experimentally indistinguishable) shut states, and possibly more than one open state
100 (see, for example, Section 13). It may be noted that, insofar as there will usually be
fore shut states than open ones, the distributions of shut periods are potentially far more
informative than the distributions of open times. A simple example of a mechanism with
o shut states is now considered in some detail.

i

es will be

Therefore, 41. A Simple Ion Channel-Block Mechanism
nt, KA == ( 1 ¥ . . . P
effective Consider the following simple mechanism (Armstrong, 1971; Adams, 1976) for ion

“channel block, which assumes that agonist binding is much faster than the open-shut reaction,
asdiscussed in Section 3.5 (this is unlikely to be true, at least for the muscle nicotinic receptor).

B’ k+B
Shut = Open = Blocked. (29)

kB
State number: 3 1 2

In this mechanism, the transition rate from open to blocked states is kypxp, where xg is the
concentration of the blocking molecule. In this example, there are two shut states (shut and
blocked). Neither of the shut states conducts any current, so it is not possible to tell for

 certain which of the two shut states the system is in at any moment simply by looking at
the experimental record. This makes matters more complicated.

4.2. Relaxation and Noise
ection 4
fonsist In this example, there are k = 3 states, so it would be expected that relaxations and noise
f cach experiments would be described by the sum of two components (exponential or Lorentzian,




410

described by Colquhoun and Hawkes (1977).

where

N+bN+c=0

—b=)\1+)\2=a+B'+k+.BxB+k,B

¢ = )\1)\2 = ak,_B[l + B_<
(62

1+ ﬂg—)]
Ky

shown downward). a: Control, fitted with single exponential
fitted with sum of two exponentials (v = 1.37 and 28.1 m
—100 mV) induced by carbachol. c¢: Carbachol (20 uM),

a [
30nA
-
30ms
b '-vvﬂ
30nA
30ms

David Colquhoun and Alan G. Hawkes
respectively) with rate constants denoted \, and A,. The following results can be derived as

Although it is often convenient to derive results in terms of the rate constants \; and
Ay, it is preferable, whenever possible, to refer to the time constants, T, = 1/A\; and 7, = 1/
A, (as used in equation 4). There are two reasons for this. First, it avoids confusion between
the fundamental rate constants in the mechanism (k_,, etc), and the derived or observed rate
constants, \. Each of the observed rate constants depends on all of the fundamental rate
constants. These components are easy to observe in the case of some channel-blocking drugs,
as illustrated in Fig. 3. Second, it is easier to think in terms of time rather than frequency.

In this case, we find the two rate constants to be the solutions of the quadratic equation

(30)

G

Figure 3. a and b: Endplate currents at —130 mV (dots) evoked by nerve stimulation (inward current is

(t = 7.1 ms). b: In presence of 5 .M gallamine,
s). ¢ and d: Spectral density (dots) of noise (at

fitted with single Lorentzian (T = 3.47 ms) d:
Carbachol (100 wM) in presence of gallamine (20 wM), fitted with sum of two Lorentzians

(T = 0.65 ms
and 7.28 ms). Reproduced from Colquhoun and Sheridan (1981), with permission.
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Figure 3. Continued,

and Kg = k_p/k, 5 is the equilibrium constant for blocker bin
of the two components are also related to the re
complicated way (see Colquhoun and Hawkes, 19

ding. The relative amplitudes
action rate constants, though in a rather
77; Chapter 20, this volume).

4.3. Open Lifetimes of Single Channels

By contrast with noise or relaxation, the analysis of open times for single channels is
very simple in this case. There is only one open state, and it is identifiable on the experimental
record. By virtue of the rule given in expression 24, the open lifetime must therefore be

411
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distributed exponentially with mean 1/(a + k., gxg). This follows from expression 24 because

there are two ways out of the open state (shutting or blocking) with transition rates « and
k. pxp, respectively.

4.4. Shut Lifetimes of Single Channels

Because there are two indistinguishable shut states, this is not as simple as previous
cases. However, in this particular mechanism, the two shut states cannot intercommunicate
directly but only by going through the open state. This makes matters much simpler than
they would otherwise be, because each period for which the channel is shut must consist
either of a single sojourn in the shut state (exponentially distributed with mean 1/B8") or of
a single sojourn in the blocked state (exponentially distributed with mean 1/k_g). The overall
distribution of shut times is therefore simply a mixture of these two distributions in proportions
dictated by the relative frequency of sojourns in the shut and blocked states (as long as
only one channel contributes to the observations; see Section 8). These frequencies will be
proportional to o and k,pxp, respectively, because these rate constants give the relative
frequencies (probabilities) with which each of the two shut states is entered, starting from
the open state. Thus, the pdf of all shut times can be put into the general form of a mixture
of (in this case) two exponentials (see equation 25), as

f( =ap'e P + ayk_ge*-8

where the areas of the two components are
(¢ kipxg
= [ ———— d = | =—— 32
4 ((X + k+B-xB> an % (0( it k+BxB> ( )

4.5. Bursts of Openings

If the agonist concentration is low (B’ is low), openings are infrequent, and if the blocker
dissociates quite rapidly from the open channel (k_g is large), blockages are brief. In this
case, openings would be expected to occur in bursts as the channel blocks and unblocks
several times in quick succession before entering a long shut period. This has been observed
in many cases (e.g., Neher and Steinbach, 1978; Ogden et al., 1981) and is illustrated in
Fig. 4.

The burst-like appearance is just the single-channel equivalent of a double-exponential
relaxation, as illustrated in Fig. 5 (compare Fig. 2, in which a simple exponentially distributed

open lifetime gave rise to a simple exponential relaxation). But not all channel blockers will
produce such obvious effects, as discussed next.

4.5.1. Fast Channel Blockers

Some low-affinity blockers produce very brief blockages (e.g., about 20 s for acetylcho-
line itself on nicotinic receptors; Ogden and Colquhoun, 1985). They therefore have noticeable
effects only at high concentrations, at which blockages are very frequent. Bursts will consist

Stochastic

Figure ¢
receptor
absence
free Mg
25 pM
structur
opening
and are
Gibb or

of ala
(k_p i
noisy
only t
to the
(In th
relaxa
length

4.5.2.

y
on ni
Such
openi
there
that t



avid Colquhoun and Alan G. Hawkeg

Vs from expression 24 because
g) with transition rates o and

IS not as simple as previous
€S cannot intercommunicate
- matters much simpler than
hannel is shy¢ must consjst
uted with meap 1/8") or of
th mean 1/x_ 8)- The overall
distributions jn proportions
blocked states (as long as
- These frequencies will be
0nstants give the relative
S 1S entered, Starting from
general form of 4 mixture

;) (32)

quent, and if the blocker
kages are brief. In thig
el blocks and unblocks
This hag been observed
1) and is illustrated in

fa double-exponential
Ponentially distribyted
 channe] blockers wi]]

t20 s for acetylcho-
efore have noticeable
t. Bursts wij] consist

Stochastic Interpretation of Mechanisms

A

20 ms

10 ms

T t
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Fig. 3b). The open state is shown as a downward
nels in the presence of an ion-channel-blocking

Figure 5. Schematic illustration to show why the occurr
biphasic relaxations (like, for example, that illustrated in
deflection. a: Simulated behavior of seven individual ion chan

ly at time zero by 2 quantum of acetylcholine,

drug. Channels are supposed to be opened nearly synchronous
and the acetylcholine is supposed to disappear rapidly from the synaptic cleft. Thus, each channel produced
only one burst of openings before it finally shuts (as marked on channel 1, which has two blockages and

therefore three openings before it shuts). b: Sum of all seven records shown in a. The initial decline is rapid
(time constant Ty) as open channels become blocked, but the current thereafter declines more slowly (time
constant 7,). The continuous line is t

he sum of two exponential curves (shown separately as dashed lines)
with time constants T¢ and Ty The slow time constant, under these con

ditions, reflects primarily the burst
length rather than the length of an individual opening. (See also Neher and Steinbach, 1978.)

1, the relaxation would reflect only the shortened openings; there
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4.6. The Number of Openings per Burst
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2 its next transition, become blocked (state 2). This probability takes no account of how
much time elapses before the transition occurs but only of where the transition leads when
it eventually does occur. It therefore depends simply on the rate of transition from state 1
0 state 2, k. pxg; this rate must be divided by the sum of all rates for leaving state 1 so that

the probabilities add to unity. Thus, we obtain

k.pxp
o + k+B-xB (33)

T2 =

in equation 32 to define the relative frequency of entry

hannel does not block next, the only other possibility is
ansition of the open channel is to the shut

which is precisely what was used
into each shut state. If the open ¢
that it shuts next, so the probability that the next tr.

state (state 3) is

o
o + kigxp (34

Ty =1—mTn=

We shall also need the probability that the next transition of the blocked channel is to the
open state. In this particular mechanism, equation 29, there is nowhere else the blocked

channel can go, SO

my =17 (35)

The probability that a burst has only one opening is simply the probability that the

channel, once open, then shuts, i.e., 3. If the burst has two openings (and therefore one
blockage), the open channel first blocks (probability 12), then reopens (probability TT21)s
bility m,3). So the overall probability of seeing two openings is the

and finally shuts (proba
product of these three probabilities, i.e., (MM )3 Extension of this argument gives the

probability of a burst having r openings (and r — 1 blockages) as

P(r) = (TiaTa) "' = () (A — ™) (= 1,2 cxe0®) (36)

alled a geometric distribution. The cumulative form of this

This form of distribution is ¢
penings per burst, is

distribution, the probability that we observe n or more O

P(r=n) = (wpm)"! 37N
The mean number of openings per burst (denoted m,) is
m=irp(r)=—1—=i+’if—‘*1‘i (38)
' 1 = o

r=1

This last result predicts that the mean number of openings per burst should increase linearly

with the blocker concentration, with slope kyglo.

The number of blockages per unit open time is predicted to be simply kpxp, SO @ plot
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of the observed blockage frequency against xg should go through the origin an
of k.. This behaviour has been o

The geometric distribution is the discrete equivalent of the exponential distribution. It be known ¥
has the characteristic that a given increment in r reduces P(r) by a constant factor (viz lengths of ¢
m,,7,), Which is analogous to the behaviour of an exponential. And when m, is large, the will be like
geometric distribution is well approximated by an exponential distribution with mean . the lengths
More generally, we expect that, under conditions where distributions of time intervals a By ust
described by a mixture of exponentials (see equation 25), the distributions of quantities such for the toft
as the number of openings per burst (which can adopt only discrete integer values) will be burst, m, f
described by a mixture of geometric distributions (see also Chapter 19, this volume). The 39, Thus,
number of geometric components in the distribution of the number of openings per burst 18
determined by the number of routes between open states and short-lived shut states (e
Section 13.4) and is therefore not more than the number of open states (see also Chapter
20, this volume; Colquhoun and Hawkes, 1982, 1987).

4.7. Lifetime of Various States and Compound States Thus, the
have beer
From the rule obtained earlier, in equation 24, we can immediately obtain the distribution This resu
of lifetimes in the three individual states. These will be exponentially distributed with the total
on avera
Mean open lifetime: mo = /(o + kipXxs) (39)
Mean blocked lifetime (gap within a burst): m,, = 1/k_g (40)
Mean shut lifetime (gap between bursts): m, = 1/p’ 41) where W
K =1
Thus, if bursts can clearly be distinguished in the observed record, we can, for example,
obtain an estimate of k_gp simply by measuring the mean length of gaps within bursts. The
A
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division of openings into bursts may be a particularly useful procedure if more than one
channel is contributing to the experimental record (see Section 8). In this case, it will not
be known whether a burst originates from the same channel as the previous burst, so the
lengths of shut times (gaps) between bursts will not be interpretable. Usually, however, it
will be likely that all openings within a particular burst originate from the same channel, so
the lengths of gaps within bursts will be interpretable and useful.

By use of the means in equations 39-41, we can immediately obtain the average value
for the total open time during a whole burst. It will be the mean number of openings per

burst, m, from equation 38, multiplied by the mean length of an opening, m, from equation
39. Thus,

Il

Mean open time per burst = m,m, = (1 + kigxg/ a)(—“l—>

a + k+B.xB

=1/a (42)

Thus, the mean open time per burst is exactly what the mean length of an opening would
have been if no blocker were present, as was first pointed out by Neher and Steinbach (1978).
This result seems surprising at first, and it will be discussed again in Section 6. Similarly,
the total length of time spent in the blocked state per burst (total shut time per burst) is,
on average,

k.

O ) e e 43)
(3

Mean shut time per burst = (m, — Dm,, =

where we denote the blocker concentration, normalized with respect to its equilibrium constant
(Kg = k_plk,p), as

cg = xp/Kp (44)
Addition of equations 42 and 43 gives the mean burst length as

]. + Cp
Mean burst length =

(45)

as derived by Neher and Steinbach (1978). This is predicted to increase linearly with the
concentration of blocker.

We have just obtained means for the durations of various quantities characteristic of
the burst, but so far we have not mentioned the distribution of these variables. It can be
shown (see below; Colquhoun and Hawkes, 1982) that the fact that there is only one open
state implies that the total open time per burst has a simple exponential distribution (with
mean 1/a as found above). Similarly, the fact that the gaps within bursts are spent in a single
state (state 2, the blocked state) implies that the total shut time per burst (excluding bursts
that have no blockages in them) will also have a simple exponential distribution, with the
overall mean derived in equation 43 divided by the probability that there is at least one
blockage, which, from equation 37, is P(r = 2) = m,m,,.

The distribution of the number of openings per burst had one (geometric) component
because there is only one open state in this example. However, the distribution of the burst




length will be described by the sum of two exponential terms (because the burst is a period

of time spent in either of two states, open or blocked). This distribution can be derived
as follows.

4.8. Derivation of Burst Length Distribution for the Channel-Block
Mechanism

We note that a burst consists of a sojourn in either of two states, open or blocked. Ag
soon as the shut state (see equation 29) is entered, the burst ends. Thus, we want to find the
distribution of the time spent oscillating within the pair of burst states (open = blocked)
without leaving this pair for the shut state.

We have already considered one example, the distribution of all shut times, that involved
a sojourn in a pair of states, but this was unusually simple to deal with because the two shut
states in question (shut and blocked) could not intercommunicate. In this case, the two states
of interest (open and blocked) can intercommunicate, so a more general approach is needed,
a similar approach can be used for many problems that involve a sojourn in a set of two or
more states.

The burst starts at the beginning of the first opening and ends at the end of the last
opening; the channel is open at the start and end of the burst. We have already considered
in equation 8 a probability defined as

P,,(#) = Prob(open at time |open at time 0) (46)

This is what is needed for derivation of the time course of the macroscopic current or for
the noise spectrum. However, it is not quite what we need now:; this probability allows for
the possibility that the system may enter any of the other states between 0 and ¢, but if the
shut state is entered, the burst is ended, and we are no longer interested. What we need is
a modified version of this that restricts the system to staying in the burst (i.e., in either open

or blocked states) throughout the time between 0 and . This sort of probability will be
denoted by a prime. Thus,

Pi,(f) = Prob(stays in burst throughout 0, r and open at tiopen at 0) (47)

By analogy with the procedure in Section 3, we start by obtaining an expression for
11(t + Ar), the probability that the channel stays within a burst for the whole time from 0

to ¢ + At and is open at ¢ + Ay, given that it was open at # = 0. This can happen in either
of two ways (the probabilities of which must be added):

1. The channel is open at ¢ [with probability Pi,(t)] and stays open during the interval
At between ¢ and ¢ + Ar. The probability that the channel does not stay open during At is
(o + kipxp)Ar + o(A1), so the probability that it does stay open during Aris 1 — (o +
ki pxg)At — o(Af).

2. The channel is blocked (state 2) at time ¢ [the probability of this, following the
notation in equation 8 is Pj,(¢)], and the channel unblocks during At [with probability k_g At
+ o(Ar)]. Assembling these values gives our required result as

Pi(t + Ar) = PL(O[1 — (a0 + kypxp)Ar — o(AD)] + Pi(0)[k_gAt + o(AD)] (48)
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dP(1
AP _ _ (o + kypxp)Piu() + k-sPialt)

This cannot be solved as it stands becaus

However, if an exactly

dt

analogous argument t

Pi;(t), we obtain another differential equation,

We now have two simultaneous equ
example, equation 49 can be rearranged to give an expr
into equation 50. In this way, Pia(f) is eliminated, an

gquation in P1,(¢) only:

4P ()  dPu(t
u® | dPu(®) (o + kypxp + k-p) + ak_sPL(®) = 0

dPix(t)
dt

dr? dt

= kypxg PLi(D) — k-

s Pl2(0)

Standard methods give the solution of this as the sum of two exp

constants \; and A

PL(D) =

The two rate constants, A and Ao,

The pdf for the burst length follows directly from this. It i

f(r) = lim [Prob(burst lasts from O to t an
At—0

In this case, the burst can be left only by direct
state; the blocked state cannot shut directly, so th
invisible period in the blocke

MM

== )\1)\2 = OLk_B
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the burst lasting from
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N+bN+c=0
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owing At to tend to zero, gives (by the method used
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d we obtain a single (second-order)

(5D

onential terms with rate

(52)

are found by solution of the quadratic equation,
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jgy= hm, (Pl (OlaAr + o(An)/ At} = aP(0) (59)

where P},(¢) is given by equation 52. Thus, the final form of the distribution of the burst
length is, in the standard form specified in equation 25,

f) = ahe ™M+ ahe 2! (56)

where the areas of the two components are

OL(k_B - )\1) (1()\2 - k#B)
B " and @ =T 7 5
8l — Bl 2= 0w — M) 4

a

The mean burst length follows from

- [ _a o (11w
= L o =2+ 2 (59)

o

which agrees with the result already found in equation 45 by a different route.

Two things are noteworthy about this distribution. (1) Unlike the simple case in which
states do not intercommunicate, which was exemplified in equation 32, the two rate constants
defined by equation 53 are compound quantities with no exact physical significance. (2) The
two rate constants found here are not the same as those found for noise and relaxation
experiments, as given in equations 30 and 31. The present versions are simpler because they
do not involve rate constants that are concerned only with transitions from states outside the
burst; i.e., they do not involve B’ in this case. However, if few channels are open (B 18
small), the rate constants for noise and relaxation, from equation 31, will become similar to
those for the burst length distribution, from equation 53

5. A Simple Agonist Mechanism

The mechanism of Castillo and Katz (1957), which has already been discussed in
Sections 1.1 and 3.5, also has, like that just discussed, two shut states and one open state.
However, in this case, the two shut states can intercommunicate directly. It will be convenient

to number the three states thus

R AR* (59)

State Number

5.1. Shut Times

This mechanism can be analyzed in much the same way as the channel-block mechanism.
In this case, because the two shut states intercommunicate, the distribution of all shut periods,
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tlihough it will still have two exponential terms, will not have rate constants that have a

ple physical significance. The rate constants must be found by solving a quadratic as in
equation 53. The derivation follows the same lines as that for the distribution of the burst
ength and is given in full by Colquhoun and Hawkes (1994), so it will not be repeated here.

5. Bursts of Openings

Again, openings are predicted to occur in bursts, in this case bursts of several openings
furing a single occupancy (i.e., oscillation between AR and AR* before final dissociation).
The bursts will be obvious as long as the time spent in AR, on average 1/(B + k-,) from
e 24, is short compared with the time between bursts. The distribution of the gap between
‘bursts will be complicated by the fact that repeated occupancies (R = AR) may take place
‘efore a burst starts, and the gap between bursts will also include the time spent in AR
immediately before the first opening of the burst and immediately after the last opening, as
ilustrated in Fig. 7.

The distribution of the number of openings per burst is geometric (as in Section 4.6),
with mean, m,, given by

m, =1+ Blk_y) (60)

The openings have mean length 1/a, so the mean open time per burst is therefore m,/o.. Each
burst will contain, on average, (m, — 1) brief shuttings, each of mean length 1/(B + k_y),
giving a mean total shut time per burst of (m, — /(B + k—,). The mean burst length will
be the sum of these two quantities.

The distribution of the burst length can be found, much as in the channel-block example
(Section 4.8), by deriving an expression for P'y,(#). The way that the burst ends is rather
different in this case, however; it cannot end (reach state 3) directly from the open state but
only via AR. Therefore P';,(f) must be multiplied not only by the transition rate from AR*
00 AR, i.e., by a, as in equation 55, but also by the probability that, once in AR, the burst
ends rather than continues, i.e., w3 = k- /(B + k_)).

The openings of many sorts of ion channel are observed to occur in bursts, as illustrated

L

AR*®

State AR

burst

e ’J_I—ll-lil——l

shut i i
|

le— burst—sie——gap between bursts ——-fbursti

[}

[}
|
|
gaps within |
|
I
[}

il

Figure 7. Schematic illustration of transitions between various states (top) and observed single-channel
aurents (bottom) for the simple agonist mechanism in equation 59. This illustrates the molecular events that
underlie a burst of openings.
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in Fig. 8 for the nicotinic acetylcholine receptor. Such observations have been interpretet
along the lines suggested above, though a somewhat more complex mechanism than 59 i§
needed, as discussed in Sections 11 and 13; Chapter 20, this volume; Colquhoun and Hawkes, "
1994; see, for example, Colquhoun and Sakmann, 1985; Sine and Steinbach, 1986).

5.3. Effective Openings

If the resolution of the experiment is poor, few of the brief shuttings, of the sort show i
in Fig. 8 will be detected, and the bursts will appear to be single openings (see Section 12) '
with mean length equal to the burst length. When the shut times within bursts are short, the ‘
mean length of this “effective opening” will be little different from the total open time pef 2

burst, m,/a, i.e., from equation 60,
. 1 B 1
Mean open time per burst = - 1+ Fa (61) i

Furthermore, by virtue of equation 28, the duration of the “effective opening” will be
approximately a single exponential with this mean.

100 ms

5 ms

Figure 8. Example of bursts of channel openings elicited by an agonist. The upper trace shows four bursts
of openings elicited by acetylcholine (100 nM, adult frog endplate, filter 2.5 kHz —3 dB; unpublished data
of D. Colquhoun and B. Sakmann, methods as in Colquhoun and Sakmann, 1985). The last burst appears

to consist of a single short opening, but the other three contain at least two or three openings separated by

short shut periods. The lower section shows the first burst on an expanded time scale. It contains one fully

resolved shut period and a partially resolved shutting. On the assumption that the partially resolved event is
indeed a complete closure, time-course fitting (see Chapter 19, this volume) suggests that the burst contains
three openings (durations 10.7 ms 1.0 ms and 5.7 ms) separated by two closed periods (durations 61 s and

289 ws).
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If a channel-blocking agent is added to the mechanism in equation 59, there will now
be three shut states rather than two. If the channel blockages are, on average, much longer
than the spontaneous brief shuttings just discussed, then each activation of the channel can
be considered as a cluster of openings, the bursts within a cluster being separated by channel
blockages, and the openings within a burst being separated by spontaneous brief shuttings.
The formal theory of clusters of bursts was presented by Colquhoun and Hawkes (1982).
This theory was used by Ogden and Colquhoun (1985) to show that, in the case where the
spontaneous brief shuttings cannot be resolved, the whole burst will behave approximately
like a single “effective opening,” and application of the simple channel-block theory given
in Section 4 will not give rise to serious errors. For example, the mean length of the effective
opening will be reduced by the presence of a channel blocker in the same way as the mean
length of the actual openings is reduced.

5.4. Macroscopic Currents
When the gaps within bursts are brief, noise and relaxation experiments will give a
time constant that corresponds approximately to the mean burst length (rather than the mean
open time). This can be shown as follows.
The two macroscopic rate constants are found, as usual, by solving a quadratic equation,
A+ b\+c=0.
The well-known solution of this quadratic is

A N2 = 0.5(=b = Jb* — 4c) (62)

A less well-known alternative is

o Ry iy 63)

—b ¥ Jb* — 4c
where, as before,

—b = )\l = )\2, G'= )\1)\2 (64)

When one of the rate constants is much bigger than the other (say A¢ > A, where the subscripts
denote fast and slow), i.e., when b* > ¢, then the faster rate constant, A, is approximately

A\~ —b (65)
and, from the alternative form, equation 63, the slower rate constant, A, is approximately

A~ —clb (66)
In this case the coefficients are given (e.g., Colquhoun and Hawkes, 1977) by

—b:RS+Af:a+B+k+le+k_l
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= A\ = ak_,[l gl TR B)]
KA a

= Otk_l =+ ak+le + Bk+|XA (68)

where K, is the microscopic equilibrium constant for the binding reaction, i.e., k_/ks,
When the shut times within bursts are very short, only the slower of these components will be
detectable, and the time constant for this component will, from equation 66, be approximately

a + B + kaA + kal
ak_l + (kaxA S BkaA

~Li LB
Hie £) 4

The second approximation is valid (1) when the agonist concentration, x, is sufficiently
low, and (2) when the shut times within bursts, with mean length 1/(B + k_,), are short
enough that (8 + k_,) > a. The result in equation 69 is seen to be the mean open time per burst,
as found in equation 61, i.e., approximately the mean burst length. Several approximations had
to be made to get this result; this illustrates the general principle that there is usually no
simple correspondence between the time constants for macroscopic currents and the time
constants for the single-channel distributions.

This topic is discussed further in Sections 11 and 13 (see also Chapter 20, this volume;
Colquhoun and Hawkes, 1981, 1982, 1994).

Ts = 1/\g =~

6. Some Fallacies and Paradoxes

The random nature of single-channel events leads to behaviour that is often not what
might, at first sight, be expected intuitively. Some examples of apparently paradoxical behay-
iour and of common fallacies are now discussed.

6.1. The Waiting Time Paradox

This is most easily illustrated by consideration of a simple binding reaction

State number:

Imagine that the receptors (R) have attained equilibrium with a concentration x, of the ligand
(A). The fraction of receptors that are occupied (or the fraction of time for which a particular
receptor is occupied) will be p,() = Xal(xa + K,), where K, = k_\/k,. Suppose that at
an arbitrary moment, r = 0, the ligand concentration is reduced to zero. We should expect
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to see a simple exponential decline in receptor occupancy with a time constant 1/k_, (though
in practice diffusion problems usually preclude such simplicity). This, of course, would be
interpreted (see Fig. 2) in stochastic terms by pointing out that the length of time for which
a particular receptor remains occupied is exponentially distributed with a mean of 1/k_j,
from rule 24.

However, it might be objected that a receptor that is occupied at the arbitrary moment
t = 0 must already have been occupied for some time before ¢+ = 0, and what we measure
in the experiment is the residual lifetime of the occupied state from ¢ = 0 until dissociation
eventually occurs, as illustrated in Fig. 9. Because the mean lifetime of the entire occupancy,
measured from the moment the receptor becomes occupied to the moment of dissociation,
is on average 1/k_,, surely this residual lifetime should be shorter! On the other hand, since
the drug-receptor complex does not ‘age’—i.e., it has no knowledge of how long it has
already existed—the mean lifetime measured from any arbitrary moment must always be 1/
k- 1. Both of these arguments sound quite convincing, but the latter argument is the correct one.

The resolution of the paradox lies in the fact that we are looking, in the experiment,
only at those drug-receptor complexes that happened to exist at the moment, + = 0, when
we chose suddenly to reduce the ligand concentration to zero (no more complexes can form
after this moment). These particular complexes will not be typical of all drug-receptor
complexes: we have a greater chance of catching in existence long-lived complexes than
short-lived ones. This happens because of a phenomenon known as length-biased sampling.
Although complexes with above-average lifetimes are fewer in number than those with below-
average lifetimes (because of the positive skew of the exponential distribution), the former
actually occupy a greater proportion of the total time than the latter. The above-average
lifetimes have, therefore, a greater probability of being caught in existence at an arbitrary
moment. Although the mean length of all occupancies is 1/k_,, the mean lifetime of the
particular complexes that are in existence at ¢+ = 0 is twice as long, 2/k_,. These complexes
will, on average, have been in existence for a time 1/k_; before ¢ = 0 and for a time 1/k_,
(the residual lifetime) after #+ = 0. The paradox is resolved. Further details can be found, for
example, in Feller (1966) or Colquhoun (1971, Chapter 5 and Appendix 2).

ligand pvuen'—b’d—ligond absent from solution

(@) e .
P Jo—cesidual lifetime-s
Vv me———
Figure 9. Illustration of the waiting time paradox. (a) . [ :
Simulated behavior of six individual receptors. Before 3 | | ’ i]
t = 0, ligand is present, and the receptor becomes
occupied and vacant at random. The average lifetime 4 M ' -
of an occupancy is 1/k_; (where k_, is the dissociation =~ 5 l | I | I
rate constant). At ¢+ = 0, the ligand is removed from 6 '_h
solution, and receptors that were occupied at t = 0 |
dissociate after a variable length of time. (b) The total b} > 3 i
of the records in a, showing the time course of decline E_ ar
of occupancy. The time course clearly reflects the 33 :
distribution of the residual lifetime (defined on chan- § 2 |
nel 1), which turns out to be identical with the distribu- "; (]) L

tion of the total lifetime (also defined on channel 1).
Both are exponentially distributed with mean 1/k_,.

time
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6.2. The Unblocked Channel Fallacy

Consider the simple channel-block mechanism of equation 29. In the absence of the
blocking drug, the mean length of an opening would be 1/, It was found above that in the
presence of the blocker in concentration xg, the mean length of an individual opening is
reduced to 1/(a + k.pxg). The easiest way to imagine why the opening is, on average, shorter
is to suppose that its normal lifetime is cut short by a blocking molecule, which causes it
to cease conducting prematurely (before it would otherwise have shut). But not every opening
is ended by a blockage. The number of blockages per burst is a random variable, and a
certain number of openings will end in the normal way, by transition to the shut state, rather
than by the channel being blocked. This will be true of openings that have no blockage, so
there is only one opening in the burst (and, more generally, for the last opening in any burst).
Surely, these openings, which have not been cut short by a blockage, must be perfectly
normal, with a mean lifetime 1/c.

On this basis, it is sometimes suggested, for example, that the noise spectrum should
contain a component with the normal time constant (1/cv), which corresponds to those channels
that do not block. However, this is quite inconsistent with rule 24, which states that because
there is only one open state, its lifetime must follow a simple exponential distribution with
a mean, in this example, of /(o + kypxg). There should be no component with mean 1/a.
In fact, if openings that end by shutting in the normal way rather than by blocking (e.g.
bursts with only one opening) were measured separately from all other openings, it would
be found that their duration was a simple exponential with mean 1/(a + k.pxg); they are
shorter than “normal” even though no blockage has occurred. The reason is again connected
with length-biased sampling. Openings that happen to be very long will tend to get blocked
before they shut, so, conversely, the openings that happen to be short (less than 1/c) will
predominate among those that have no blockage. The extent to which these are shorter than
1/ turns out, with great elegance, to be precisely sufficient to make their mean lifetime
1/(a + k.pxp), exactly the same as that for openings that are terminated by being blocked.

6.3. The Last Opening of a Burst Fallacy

There are a number of other fallacies that can be disposed of easily by rule 24, which
gives the distribution of the length of time spent in a single state. The explanation is, as in
the last example, usually based on length-biased sampling. For example, the simple agonist
mechanism, equation 59 predicts that openings should occur in bursts. The average length
of an opening should be 1/a regardless of where it occurs in the burst as long as there is
only one open state (though if there is more than one open state, this may no longer be true;
see below). According to mechanism 59, the agonist cannot dissociate from the open channel.
If it were able to, it might be thought that this dissociation would end the burst and would
cut short the lifetime of the last opening in the burst. Thus, might it be possible to test the
hypothesis that the agonist can dissociate from the open state by seeing whether the last
opening of the burst has a different distribution from the others? If there is only one open
state, clearly this would not be possible. It is true that if a channel could shut by another
route as well as that shown in equation 59, the mean lifetime of the open state would be
reduced to something less than 1/c. But all openings regardless of position in the burst would
have, on average, this same reduced lifetime.
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6.4. The Total Open Time per Burst Paradox

It was pointed out earlier, in equation 42, that for the simple channel-block mechanism,
the total time per burst that is spent in the open state will be, on average, 1/a. This is exactly
what the mean open time would be in the absence of a blocker (a fact that, incidentally,
explains the inefficiency of channel block in reducing the equilibrium current when the
agonist concentration is low). How can this happen? The channel cannot ‘know’ how long
it has been open earlier in the burst and so make up the total open time to 1/a. After a
blockage, the channel is not continuing a normal open time (mean length 1/a) but starting
a new open time [with mean length 1/(oc + kigxp)]. Clearly, since the mean length of a
single opening is 1/(a + k+pxp), it follows at once that the mean open time per burst for
bursts with r openings must simply be r/(a + k., pxg). The relative proportions of bursts with
=052 s openings, given by equation 36, must be such that, on average, the total
open time per burst is 1/a.

One way of understanding this is as follows (see Colquhoun and Hawkes, 1982). Imagine
that a clock is started at the beginning of the first opening of a burst; the clock is stopped
when the channel blocks and restarted when the channel reopens. Tt is finally stopped at the
end of the burst, i.e., as soon as the channel shuts (as opposed to blocking). Thus, the clock
runs only while the channel is open, and when finally stopped, it shows the total open time
per burst. While the channel is open, the probability that it will leave the open state in At
is (o + k.pxp)At + o(Af), but if it leaves for the blocked state, the clock is stopped only
temporarily. For the whole time that the clock is running, the probability that the clock is
stopped finally, i.e., that the channel shuts (as opposed to blocking), in At is aAz + o(Ar).
This fact is sufficient to ensure that the time shown when the clock stops finally, the total
open time per burst, has a simple exponential distribution with mean 1/a; this follows from
the derivation of the exponential distribution given in Section 3.

A more general treatment (see Section 13; Chapter 20, this volume; Colquhoun and
Hawkes, 1982; Neher, 1983) shows that the total open time per burst will be 1/ for any
mechanism with one open state as long as it fulfills the following condition. Suppose that
there are any number of short-lived shut states (% states, say) in which the system stays
during a gap within a burst, and that there are any number of long-lived shut states (‘6 states,
say) in which the system stays during a gap between bursts. If the only route from the former
set of states (%) to the latter (€) is via the open state, and the total transition rate from the
open state to the 6 states is o, then the total open time per burst must be, on average, 1/
If, on the other hand, there are routes from % states to € states that do not go through the
open state (e.g., if the blocked channel can shut without reopening in the channel block
example), the mean open time per burst must be less than 1/a.

7. Reversible and Irreversible Mechanisms

Most reaction mechanisms are such that the system, left to itself, will move spontaneously
towards a true thermodynamic equilibrium. All the reaction steps in such mechanisms will

means, for example, that a cyclic reaction mechanism cannot have, at equilibrium, any
tendency to move predominantly in one direction around the cycle; this has implications for
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For reversible reactions, however, the principle of microscopic reversibility implies that the
product of the rate constants going one Way around the cycle is the Same as the product
going the other Way around. The rate constant for O, — 0O,, which has been omitted from
scheme 70, must therefore be 2450 s~!. The complete mechanism is thus
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C 5 2450/ 100 an o
50 o,
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sitions, 0.4851 X 100 = 48.51 per second,
is the same as the mean frequency of the O, = O, transitions, 0.0198 X 2450 = 48.51 per
second. The same applies to the other two reaction steps. There is no net circulation.

The rule given in statement 24 shows that the mean lifetime, m, of a sojourn in each

of the states for reaction 71 is

m, = 5 ms

m, = 0.4 ms

ms = 10 ms (73)

In order to provide a contrast to the reversible scheme in reaction 71, consider the case
ble, and reaction can proceed only clockwise around the

in which all transitions are irreversi
cycle. Suppose this mechanism is maintained in a steady state by coupling to an energy

supply, and we choose rate constants for the transitions such that the steady-state occupancies

are the same as for reaction 71; these are given in equations 72. In this example, the

occupancies must be proportional to
rate constants would be

the mean lifetime of each state, so a suitable choice of

100 O

C 102 (74)

2500
0,

There are two interesting respects in which the reversible (71
can be compared.

) and irreversible (74) reactions

7.2. Distribution of the Lifetime of an Opening

Suppose that the conductance of the two open states is identical, so they cannot be
distinguished. The distribution of the duration of an opening for the reversible mechanism
(71) can be shown (e.g., from equation 3.64 of Colquhoun and Hawkes, 1982) to have a

probability density function

)= 97.962¢~ 4™ + 1.037e" 1t (75)

where the time constants of the two exponential components are = 10.204 ms and T, =

0.384 ms. Notice that the coefficients of both terms are posi
monotonically decreasing curve.

tive so the distribution is a
It has not got a maximum or even a point of inflection (see
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Fig. 10a). It can be shown that this must always be true, whatever rate constants are inserted
in equation 71. This result is interesting in connection with observations by Gration et dk
(1982) of an open-time distribution that appeared to g0 through a maximum; their result
seems to be incompatible with any equilibrium reversible reaction mechanism.

In contrast, the irreversible mechanism (74) must give a steady-state open-time distribu-

tion with a maximum. The opening must always start in state 1 and then proceed through

state 2 before shutting can occur, SO there are few very short openings. The pdf can agai “

be found from equation 3.64 of Colquhoun and Hawkes (1982) or, in this case, by analogy
with equation 91 below. The result for scheme 74 is

f(H= 106.34(€4NT‘ — e~ )

where the time constants, in this case, are simply the mean lifetimes of open states 1 and 2,
ie., 9.804 ms and 0.4 ms, respectively. This distribution has a term with a negative sign and
must go through a maximum (see Fig. 10a), whatever the particular values of rate constants,
In these examples, the mean open lifetime is 10.2 ms for both reversible (71 and 75) and
irreversible (74 and 76) cases.

7.3. Probabilities of Particular Sequences of Transitions when the Open
States Are Distinguishable

Let us suppose now that open state 2 has a lower conductance than open state 1, s0 the
two states can be distinguished on the experimental record. Such conductance substates have

Figure 10. Reversible and irre-
versible mechanisms. a: The dashed
line shows the pdf of the lifetime
of the open (O, or 0,) state for the
reversible mechanism in equation
71. The equation for this curve is
given as equation 75. The fast com-
ponent (T = 0.384 ms) of the distri-
bution is too small in amplitude
(only 1.04 s7") to be easily visible.
The continuous line shows the pdf
of the lifetime of the open state for
the irreversible mechanism in equa-
tion 74 which is specified in equa-
tion 76. In this case, the fast
component (1 = 0.4 ms) has a nega-
tive sign, and the pdf goes through
2 maximum (i.e., very short open
times will rarely be seen).
b and c: Two possible types of open-
ing for the reversible mechanism in
equation 71; these will be observ-
able only if the two open states, O,
and O,, differ in conductance.
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that the above Sequences are equally

f the probabilities (7 values) that a
channel in one state (i) will move next to another (j); this sort of argument has already been
illustrated in Section 4, equations 33-37.

Consider first the | — 2 — 3 transition. For the values in equation 71, the probability
that a channel in state 1 will next move to state 2 is 17, = 100/(100 + 100) = 0.5, and the
probability that once in state 2 it will move to state 3 is my = 50/(50 + 2450) = 0.02 The
probability of the 1 — 2 — 3 sequence is therefore TiTs = 0.5 X 0.02 = 0.01. Now the

probability that the opening starts in state 1 in the first place is 0.98, so a fraction 0.98 x
0.01, ie., 0.98%, of all openings will be of the 351>

reaction mechanism is not reversible or that it is not ate
1985; Chapter 23 this volume). Clearly, the flow of ion

equilibrium, so any coupling between ion flow and ch
rise to asymmetry.

quilibrium (see, for example, Liuger,
s through an open channel is far from
annel gating could, in principle, give
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the distribution of the length of the shut periods between openings cannot be interpreted
without knowledge of the number of ion channels that are present. This is very unfortunate
because, insofar as there will usually be more shut states than open states, the distribution
of shut times is potentially more informative than the distribution of open times.

There are at least three things that can be done about this problem: (1) make an estimate
of the number of channels present and make appropriate allowance if there is more than
one; (2) use recordings only from patches that have one channel (evidence for this is
considered below); (3) use only the brief shut periods within a burst of openings, which may
be interpretable even if interburst intervals are not. It must be said, however, that quite often
none of these procedures proves to be entirely satisfactory, and lack of knowledge of the
number of channels continues to be a serious problem. The procedures are now discussed
in a bit more detail.

8.1. Estimation of the Number of Channels

Suppose that there are N independent channels present. The probability that r of those
channels are open simultaneously should be given by the binomial distribution as

N!
P(r) = mp6(1 — p)V " (r=0,1...,N) (77)

where py is the probability that an individual channel is open (this will, of course, be unknown
and will be lower than the observed probability of being open, if more than one channel is
present). In principle, the value of N can be estimated from data by comparing the distribution
of simultaneously open channels with the predictions of the binomial distribution. The
estimation of the binomial parameter N is, however, a problem with a notorious reputation
among statisticians (see Olkin et al., 1981). The problem is discussed critically, in the single-
channel context, by Horn (1991). He compares seven different ways of estimating N on a
series of simulated data sets with a range of parameter values.

The simplest estimate of N is just the largest number of simultaneously open channels
that is seen in the record. Although this sounds crude (it is), other methods that might be
thought of as more subtle (such as maximum-likelihood estimation of N) will often produce
much the same answer. The fact is that many sorts of record contain very limited information
about the size of N, so no method can extract much from them. It is obvious, for example,
that when a very low agonist concentration is used on a muscle endplate, long records can
be obtained without any double openings at all despite the fact that the patch contains
hundreds of channels. In general, it will never be possible to estimate N when the number
of channels is large and the probability of each being open is small. In this case, the binomial
distribution approaches a Poisson distribution, and N becomes indeterminate (only the mean,
Npo, can de determined). (Exactly the same problem arises in the study of quantal transmitter
release.) In order to have any hope of estimating N, the experiment must be done under
conditions where py is as high as possible (see Horn, 1991). The problem, however, remains
that p, is the probability of being open for one channel, and so it cannot be inferred directly
from a record derived from an unknown number of channels.

A further problem is that it is possible that the assumptions of the binomial analysis
are not met. Receptor heterogeneity is a real problem (especially in the central nervous
system) for this analysis (as well as for many others). There is also a possibility that receptors
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may not always be independent; e. g., the opening of one receptor might influence the opening
of adjacent receptors. There have been reports of such interactions, for example, Yeramian
et al. (1986), but most are not as convincing as this one.

8.2. Evidence for the Presence of Only One Channel

Obviously, if one or more double openings are seen, there must be more than one
channel. If, on the other hand, the observed record consists entirely of periods with either
zero or one channel open, then there may be only one channel present. If there is a channel
open for most of the time, and yet no double openings are seen, then it is fairly obvious that
all the openings must come from the same ion channel. This is the basis for determining the
fraction of time for which an individual channel is open by looking at clusters of channel
openings at high agonist concentrations (see, for example, Sakmann er al., 1980; Sine and
Steinbach, 1987; Colquhoun and Ogden, 1988). If, however, much of the time is spent with
no channels open, it will not be obvious how many channels are present, and some sort of
statistical test is desirable. Horn (1991) suggests, on the basis of his binomial simulations,
that if no double openings are seen, and the channel is open for more than about 50% of

the time, then it is very likely that one channel is present. Some variants on this approach
will now be discussed.

8.2.1. A Simple Approximation

Suppose that (1) channels can exist in two states only, open and shut, as in equation 1,
that (2) we observe n, single openings but no double openings, and that (3) for most of the
time no channel is open; i.e., if we denote the observed mean (singly) open time m,, and
the observed mean shut time as my, then we assume m, > m,. How probable is this observation
if there are actually N independent channels present? If we start with one channel open, the
probability, 1, that the next transition is the shutting of this one channel, with rate «, rather
than a second channel opening, with rate (N — DB, is

o
o (N— DB’ (78)

The observed probability of being open in the experimental record, Poy say, is

Mo + mg

Furthermore, given our assumption that m, > m
from the data as

o» the rate constants in this can be estimated

& ~ l/mo

B’ ~ 1/Nmg (80)
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SO we can estimate 1 from the observations as

1+( — 1} M
N mg

1—P
1 5 PON/N

We can now ask how many consecutive sj

ngle openings are likely to be seen whep
there is actually more than one channel

present. If we note that the probability that the singly
Yy a transition to a doubly open channel is (1 — ), then the
probability of getting r single openings before the first multiple opening occurs (given that
there is at least one single opening) is

P(r) == — ) (82)

This is a geometric distribution of the

sort already encountered in equation 36. The mean
number of consecutive single openings,

m, 18, as in equation 38, thus

1 1 N
|

m = ) *ﬂ:a(r)(l — Pon/N) (83)

We have observed n, consecutive sin

gle openings, so the run of single openings must be a
least n, in length. The probability of o

bserving n, or more single openings is, as in equation 37,

(84)

observed record, given that N channels are present.

Consider, for example, a record consisting of single openin
ms and mean shut time mg = 99 ms, so my/mg = 0.0101, and Py
that there are actually N = 2 channels present, equation 81, gives m = 0.9949749. If we
observe n, = 300 openings (i.e., about a 30-s record) with no double openings, then equation
(84) gives the probability of a run at least this long as 0.222 (or 0.134 if N = 3). The
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2
m~ 5= (1 = 0.5Po, = 0.75P%,) (85)

02

which differs from the result in equation (83) only by virtue of the 0.75P,,” term. In either
case, the result approaches 2/Po, when the observed probability of being open, Po,, is
sufficiently small. The result in equation (85) is plotted in Fig. 11, together with approximate
upper confidence limits for the number of openings per run.

8.2.3. Exact Solutions

Colquhoun and Hawkes (1990) also present exact calculations concerning the lengths
of runs of single openings (and bursts) in the case where there are N = 2 identical independent
channels. Such calculations are needed to explore the conditions under which the approxima-
tions are adequate, though in order to obtain exact results it is necessary to specify the
channel mechanism (whereas the above approximations have the virtue that this is not
necessary). The approximation works well when (1) the openings occur singly and are well
separated from each other, and (2) the openings occur in compact, well-separated bursts, the
shut times within the bursts being brief relative to the openings. In the latter case, the word
“opening” in the approximate argument should be replaced by “burst”; the burst is open for
a large proportion of the time (so that two overlapping bursts will certainly produce a double-
amplitude event), and for the purposes of the present argument (as well as for physiological
purposes) the burst is the “effective opening.” However, in cases where the shut times within
bursts are of the same order of magnitude as the open times, the approximation may be poor.

8.2.4. Problems of Prolonged Bursts, Desensitization, and Sleepy Channels

The approximation presented above works well when openings occur singly or in
compact bursts, but it would probably not be very good for channels such as the NMDA-

10' ¢

T 7 TTTY

10°

Figure 11. The mean number of openings per

log number of ‘openings’ per run

run of single openings in a membrane patch 10'
that contains two channels, as calculated from -
the approximation given in equation 85. The [
dashed lines show the approximate upper con- L
fidence limits for the number of openings per o T T L
run, for P = 0.05,0.01,and 0.001. Reproduced 16° 10° 16" 10

with permission from Colquhoun and
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type glutamate receptor, which produce complex and prolonged burst-like channel activation
containing shut periods some of which are considerably longer than the openings.

Furthermore, most channels show desensitization, inactivation, or ‘sleeping’ phenomena
which involve entry into shut states that may have very long lifetimes. If, for example, a
patch contains two channels, but one of them is desensitized at the beginning of the recording
it will appear that only one channel is present. If the channel is open for much of the time
then it will be obvious when the second channel emerges from its desensitized state, becau
double openings will be seen straight away, but if the probability of being open is low, if
may not be at all obvious that a second channel has appeared. Clearly, though, any method
for trying to estimate N will not work well if N is effectively changing during the recording,
This is probably one of the most serious problems in practice.

8.2.5. Fitting with a Known Number of Channels

If an estimate of the number of channels can be made, then it is possible to fit somg
sorts of distribution even when records contain more than one channel open at the samg
time (Jackson, 1985; Horn and Lange, 1983). These methods are discussed in Chapter 19
(this volume).

8.3. Use of Shut Periods within Bursts

Most channels seem to produce openings in bursts rather than singly. This observation
implies only that there is more than one shut state (see Sections 4, 5, and 13; Colquhoun
and Hawkes, 1982). Regardless of the mechanism, it is likely, if the gaps within a burst are’
short, that all of the openings in one burst originate from the same individual channel, even
if there are several channels present so the next burst may originate from a different channel.
In this case, the distribution of the lengths of shut periods within (but not between) bursts
can be interpreted in terms of mechanism as though only one channel was present, even
when it is not known how many channels are actually present. This procedure was employed,
for example, by Colquhoun and Sakmann (1985) and Sine and Steinbach (1986).

9. Distribution of the Sum of Several Random Intervals

Many problems involve finding the distribution of the sum of two or more random
intervals, for example, the durations of the sojourns in the various states that constitute a
burst of openings. This sort of problem also arises when we consider the relationship between
single-channel currents and macroscopic currents (see Section 11). Some useful examples
will be discussed in this section.

9.1. The Sum of Two Different Exponentially Distributed Intervals

By way of an example, consider again the simple two-state mechanism specified in
equation 1, namely:
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Notice that this pdf is the difference between two exponential terms and therefore,
unlike the simple exponential, goes through a maximum (as already illustrated; see equation
76 and Fig. 10a). This shape indicates a deficiency of very short values (compared with a
simple exponential distribution), and this is what would be expected intuitively, because in
order to get a short interval both the open and shut times must be very short, and this is
relatively unlikely to happen. This characteristic shape is illustrated again in Section 11,
Fig. 16, when the relationship between single-channel currents and macroscopic currents is
discussed. The mean of this pdf, the mean time between openings, is, from equation 23

mean = r tf(tdt = 1 + —1—, 92)
0 o B

As expected, this is merely the sum of the mean open time and the mean shut time. The
mean opening frequency is the reciprocal of this, i.e.,

S = api) = Bpu) &
where py() and py(©) are the equilibrium probabilities (or fractions) of open and shut
channels, respectively. In other words, the mean opening frequency 1s the opening transition
rate, p’, multiplied by the probability, p,(*), that a channel is shut (i.e., available to open).
It is, of course, equal to the mean equilibrium shutting frequency, ap (). This provides
another way of interpreting rate constants in terms of the frequency with which transitions
occur (see also Sections 1.2 and 4.6 and Fig. 6).

9.2. The Distribution of the Sum of n Exponentially Distributed Intervals

As an example, consider the case where we wish to know the distribution of the total
open time in a burst of openings that contains exactly n openings (this will be close to the
burst length if the shut periods are short). Suppose that each of the openings has the same
exponentially distributed length with mean /o, i.e., they have pdf fi(t) = ae ™, as above.
We need, according to the argument in the previous section, the n-fold convolution of fi(f)

with itself. This is made easy by using Laplace transforms as in equations 89 and 90. The
Laplace transform of the required result is

fA6s) = [FEO) = (S T a) 94

Inversion of this transform gives the required pdf as

B OL(OL[)n‘ le~at

fo = =1 9%

This is known as a gamma distribution. It has a mean n/a, simply n times the lifetime of
an individual interval, as expected, and a variance n/a. Like the result in equation 91, it is
zero at ¢+ = 0 and goes through a maximum at = fmx = (0 — 1)/a. Forn = 1 it reduces
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to a simple exponential, but as n gets larger, the pdf becomes more and more symmetrical,
eventually approaching a Gaussian shape. The cumulative form of this distribution is given,
for example, by Mood and Graybill (1963):

n—1 "
Fo=1- (O;‘? e (96)
r=0 :

9.3. The Distribution of a Random Number of Exponentially
Distributed Intervals

The results in the last section referred to the sum of a fixed number of exponentially
distributed values. In the case of, for example, a burst of channel openings, the number of
openings is not fixed but random. In the simplest cases the number of openings per burst
will follow a geometric distribution, as exemplified in Sections 4.6 and 8.2. If we write the
geometric distribution in the form already used in equation (82), the probability of there
being r intervals (e.g., r openings per burst) is

P(r)==w"11 - m) 97)

with mean

m, = 1/(1 — ). (98)

The required pdf can be found by weighting the pdf for r openings, with Laplace transform
ft(s)’, as in equation 94, with P(r) from equation 97. This gives

r=oo

> POLFOY

r=1
gl—a‘rrzzoo o\
™ s+ a
r=1

ol —m
s+ a(l — ) 9

I

()

Comparison of this result with that in equation 89 shows that its inverse transform is a simple
exponential with mean l/a(l — 7) = m,/a, i.e., simply the mean number of intervals, m,
from equation 98, times the mean length of one interval; thus,

f() = (a/m,) exp(—at/m,) (100)

This completes the derivation of the result already given in equation 28.
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10. Correlations and Connectivity

It seems surprising, at first sight, that a memoryless process can show a correlation
between the length of one opening and the length of the next. Nevertheless, this is the case,
as was first pointed out by Fredkin er al. (1985). The existence of such correlations is of
importance in two main respects. First, the behaviour of channels after a perturbation (e.g.,
a voltage jump or concentration jump) depends on the nature of correlations (see also Section
11). And second, correlation phenomena can potentially give information about the way that
the various states in the mechanism are connected. This latter ability is of considerable
interest for the investigation of mechanisms, though its full potential has yet to be exploited
experimentally. Both macroscopic and, to a greater extent, single-channel experiments can
give information about the number of states that exist, but it is much harder to discover how
these states are connected to each other, and the ability of correlation measurements to
provide such information is a unique advantage of being able to measure the behaviour of
single molecules.

10.1. Origins of Correlations

According to our (Markov) assumptions, the duration of a sojourn in any individual
state must be independent of (and therefore not correlated with) the length of the sojourn in
the previous state. It is for this reason that no correlations between open or shut times would
be expected for the simple two-state mechanism in equation 1 or, indeed, for any of the
mechanisms that have been discussed so far. In fact, correlations can arise only if there are
at least two indistinguishable shut states and at least two indistinguishable open states (i.e.,
at least two open states with the same conductance). Furthermore, there must be at least two
routes from open states to shut states before correlations are expected (Fredkin ef al., 1985;
Colquhoun and Hawkes, 1987; Ball and Sansom, 1988a). More precisely, correlations will
be found if there is no single state, deletion of which totally separates the open states from
the shut states. The number of states that must be deleted to achieve such a separation is
the connectivity of open and shut states, so correlations will be seen if the connectivity is
greater than 1. The mechanisms in schemes 101 each have two open states (denoted O) and
three shut states (denoted C).

(@) C|35 b (|35 © Cls
C, O Cc, O C,—O
|4 | i |4/ I |4 | I (101)
C;—0, C;—0, C3—0,

In schemes a and b there will be no correlations; deletion of state C; (or of state O,) in a
separates the open and shut states, as does deletion of C; in b. In ¢, on the other hand, the
connectivity is 2 (e.g., deletion of C; and C4 will separate open and shut states), so correlations
between open times may be seen. Even in this case, correlations between successive open
times will be seen only if the two open states, O, and O, have different mean lifetimes. The
correlations result simply from the occurrence of several C4 = O, oscillations followed by
a C; = C, transition and then several C; = O, oscillations, so runs of O, and runs of O,
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openings occur. The effect will clearly be most pronounced if the C; = C; reaction is
relatively slow.

For example, most of the properties of the nicotinic receptor are predicted well by c¢:
in this case O, has a long mean lifetime compared with O, (but it has the same conductance),
whereas C; has a very short lifetime. Thus, long open times tend to occur in runs (so there
is a positive correlation between the length of one opening and the next), but long openings
tend to occur adjacent to short shuttings, giving a negative correlation between open time
and subsequent shut time (Colquhoun and Sakmann, 1985).

These results can be extended to correlations between the lengths of bursts of openings
and between the lengths of openings within a burst (Colquhoun and Hawkes, 1987). There
will be correlations between bursts when the connectivity (as defined above) between open
states and long-lived shut states is greater than 1. There will be correlations between openings
within a burst when the direct connectivity between open states and short-lived shut states
is greater than 1 (the term direct connectivity refers only to routes that connect open and
short-lived shut states directly, not including routes that connect them indirectly via a long-
lived shut state, entry into which would signal the end of a burst). Thus, for the examples
in scheme 101, taking Cs to be the long-lived shut state, neither a nor b would show any
such correlations, whereas ¢ would show correlations within bursts but no correlations between
bursts (as observed experimentally by Colquhoun and Sakmann, 1985). The following scheme
(in which Cs and Cg both represent long-lived shut states), on the other hand, would show

all three types of correlation.

T
(f“—(l)' (102)
C;—0,

10.2. Measurement and Display of Correlations

Correlations of this sort have been reported for many other ion channels, by, for example,
Jackson et al. (1983), Labarca et al. (1985), Ball et al. (1988), McManus et al. (1985), Blatz
and Magleby (1989), Magleby and Weiss (1990b), and Gibb and Colquhoun (1992).

In the earlier work in this field, it was usual to measure correlation coefficients from
the experimental record. However, it is visually more attractive, and in some respects more
informative, to present the results as graphs, as suggested by McManus et al. (1985), Blatz
and Magleby (1989), Magleby and Weiss (1990b), and Magleby and Song (1992). An example
of such a plot is shown in Fig. 12. This graph illustrates correlations found for the NMDA-
type glutamate receptor (Gibb and Colquhoun, 1992). To construct this graph, five contiguous
shut-time ranges were defined (each centered around the time constant of a component of
the shut-time distribution). Then, for each range, the average of the open times was calculated
for all openings that were adjacent to shut times in this range, and this average open time
was plotted against the mean of the shut times in the range. The graph in Fig. 12 shows a
continuous decline, so it is clear that long open times tend to be adjacent to short shut times,

and vice versa.
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Figure 12. Relationship between the
{ mean durations of adjacent open and shut
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10.3. Correlations as a Test of Markov Assumptions

The reason the openings that are adjacent to short closings tend to be long was investi-
gated further, with the results shown in Fig. 13 (Gibb and Colquhoun, 1992). Figure 13A,B
shows the conditional distributions of open times for openings that occur adjacent to the
shortest closings (in A) and for openings that occur adjacent to the longest closings (in B).
(The means from these distributions contribute points to Fig. 12.) The distributions are
displayed as distributions of log(duration), as explained in Chapter 19 (Section 5.1.2) (this
volume). The dashed line in A shows the (scaled) fit from B, and the dashed line in B shows
the (scaled) fit from A. It can be seen that there is an excess of long openings in A, and an
excess of short openings in B. This is shown quantitatively in Fig. 13C,D; it is clear from
Fig. 13C that the time constants for the open-time distribution are much the same for all
openings, regardless of whether they are adjacent to short or long shuttings. The mean open
times differ only because the areas attached to each time constant differ, as shown in Fig.
13D. Similar observations were made by McManus and Magleby (1989) for the large-
conductance calcium-activated potassium channel; they pointed out that this behaviour is a
clear prediction of the Markov assumptions, whereas at least some non-Markov models do

not predict such behaviour and can therefore be rejected on the basis of these observations
(see Section 1.3).

10.4. Two-Dimensional Distributions

In order to extract all the information from the experimental record, it is necessary,
if correlations are present, to consider two-dimensional distributions rather than the one-
dimensional distributions considered so far (Fredkin et al., 1985). An example of a two-
dimensional distribution is shown in Fig. 14A (Magleby and Song, 1992). This distribution
shows open time on one coordinate and shut time on the other. It was constructed from
simulated data that were derived from the mechanism shown in equations 101¢ and 110, so
there are two components in the open-time distributions and three components in the shut-
time distributions (which resemble qualitatively the distribution shown in Chapter 19, this
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Figure 13. Conditional distributions of apparent open times adjacent to brief (A) and long (B) shut times.
Data were as described in Fig. 12. A; From a total of 1206 apparent open times, 640 were identified as
adjacent to shut times in the range 50 s to 0.3 ms. These were fitted with the sum of three exponential
components (solid curve) with time constants (areas in parentheses) of 48 us (52%), 0.36 ms (8%), and 3.21

ms (40%). The fit predicted a total of 1154 open times. The dashed line in A shows the fit from B scaled

unconditional open-time distributions, and the dashed line
In D, the filled circles, filled squares, and filled diamonds refer to the area of the fast, intermediate, and
slow components of the open-time distributions. The lines drawn in D have experimental values only at the

data points and are drawn only so that the data values for each open time component can be clearly identified.
Reproduced from Gibb and Colquhoun, 1992,
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Figure 14. Ilustrations of correlations based on 107 simulated observations (reproduced from Magleby and
Song, 1990, with permission). A: A bivariate distribution of open time on one axis and shut time on the
other. The distribution of log(duration) is shown, s0 that peaks in the distribution occur at times corresponding
to the time constants of the exponential components (see Chapter 19, this volume, Section 5.1.2). B: An

example of the dependency plot (see text) for the same simulated data.

volume, Fig. 15). The distributions in Fig. 14 are displayed as distributions of log(duration),
as explained in Chapter 19 (this volume) (Section 5.1.2).
The two conditional open-time distributions that were shown in Fig. 13A,B are simply
sections (at two particular fixed shut times) across the two-dimensional distribution in Fig.
14A. In practice, in order to construct the conditional distributions from experimental data,
it is necessary to use a range of shut times (i.e., a shut-time bin) rather than a single exact value.
The fact that the open-time distribution differs according to the adjacent shut time (as
in Fig. 13A,B) is visible in the two-dimensional distribution, but it is not very prominent.
It was therefore suggested by Magleby and Song (1992) that the correlations could be made
more obvious by displaying the data in the form of a dependency plot. They define dependency
as the (normalized) difference between the actual frequency of particular shut-open time
pairs and the frequency that would be expected if openings and shuttings were independent.
Define fo(to) and fs(ts) as the unconditional probability density functions for open times and
shut times, respectively, and f(to.ls) as the two-dimensional distribution. If there were no
correlations, then the two-dimensional distribution would simply be the product of the separate

distributions, fo(to)fs(ts). Thus, dependency, d(tosts), was defined as

fltosts) — folto)fs(ts)
ditots) =—F" 77~ -
(fots) folto)fs(ts)

This will be zero for independent intervals, and a value of +0.5 would indicate that

there are 50% more observed interval pairs than would be expected in the case of independent
plot from experimental values is

adjacent intervals. A description of how to calculate the

given by Magleby and Song (1992). An example is shown in Fig. 14B for the data shown
in Fig. 14A. The dependency plot clearly shows the excess of short open times adjacent to
long shut times, and the deficiency of short open times adjacent to short shut-times.

Plots of the sort shown in Fig. 14 can be used to distinguish between different kinetic
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mechanisms and as an aid in fitting. It may be mentioned here that full maximum-likelihood
fitof the entire idealized data record, not of separate distributions

10.5. The Decay of Correlations

In a record at equilibrium, the correlation between, for example, an open time and the
nth subsequent open time (for a single channel) will decay towards zero with increasing lag
(n). Likewise, the distribution of open times following a Jump will, after sufficient time,
eventually become the same as the equilibrium distribution of all open times (see Section 11).

In principle, the connectivity between open and shut states can be measured experimen-
tally, because the decay of the correlation coefficient with increasing lag (n) should be
described by the sum of m geometric terms, where m is the connectivity minus one (Fredkin
et al. 1985; Colquhoun and Hawkes, 1987). A similar decay should be seen in the mean

lifetimes of events following a jump (Ball ez al., 1989). The full potential of measurements
of this sort has yet to be achieved in practice.

10.6. Spurious Correlations

It was pointed out in Section 10.1 that the correlations will be strongest for the mechanism
in equation 101c when the C; = C; reaction is relatively slow. At the extreme case, when
this rate is zero, we are left with two separate channels with different mean open and shut
times. Furthermore, neither of these channels would, by itself, show any correlations. Clearly,
it is quite possible for spurious correlations to arise as a result of receptor heterogeneity
(which is a major problem in many studies). In fact, it is even possible in principle for

11. Single Channels and Macroscopic Currents after a Jump

Essentially everything that has been said so far concerns single-channel records that
are in a steady state (see Section 7). However, synapses and action potentials do not function
in a steady state; they operate far from equilibrium, and so it is important to understand
single-channel behaviour in the transient state before equilibrium is attained.

We shall discuss here only the case where the transition rates between states are constant,
Le., do not vary with time. This means, for example, that membrane potential and/or ligand
concentration must be constant (see Section 1.1). We therefore consider only the cases where
membrane potential or ligand concentration are changed in a stepwise fashion from one
constant value to another. Such experiments are usually referred to as voltage jumps and
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concentration jumps, respectively. It is, for example, common to mimic a synaptic current
by applying a very brief rectangular pulse of agonist (to an outside-out membrane patch),
We shall not discuss here the practical problems that often arise in achieving sufficiently

rapid changes in potential or concentration to fulfill the assumptions. Some of the practical
aspects are discussed in Chapter 19.

I1.1. Single Channels after a Jump in the Absence of Correlations

The behaviour of single channels following a sudden change in membrane potential or
ligand concentration is not necessarily the same as that in the steady state. The differences
depend primarily on'two things. First, they depend on the state of the system at the moment
the jump was applied (¢ = 0). Second, they depend on whether the channels show correlations
of the sort discussed in Section 10.

The simplest case occurs when channel openings are uncorrelated (see Section 10). This
will, for example, always be the case if there is only one open state. In this case, all the
openings and shuttings that follow the Jump will, with one exception, have exactly the same
distributions as in the steady state.

The one exception is the first latency. Consider, as an example, a membrane patch that
is initially bathed in an agonist-free solution, so the channel(s) in it are shut. At z = 0 the
agonist concentration is suddenly increased from zero to a finite value. The time that elapses
before the first channel opening occurs is defined as the first latency, and its distribution
depends on the fraction of receptors that are in each of the different shut states at ¢ = 0.

Consider, for example, the simple agonist mechanism that was discussed in Section 5
and is shown again in equation 103. The channels would all be in state 3 (R, the resting
state) in the absence of agonist. Compare this situation with that which obtains during a
steady-state record with a constant agonist concentration: in this case, the shut channels
would not all be in state 3 (R) but would be divided between state 3 and state 2 (AR),
according to the value for the equilibrium constant for binding. The initial condition from
which an opening occurs differs in these two cases, so the distribution of the shut times that
precede openings will differ accordingly. This is intuitively very reasonable. At equilibrium,
every shut period is preceded by an opening, so the shut period must always start in state
2 (AR), and similarly, every shut period must end in state 2 [this is why the probability
P(1) is needed for the derivation of the shut-time distribution given by Colquhoun and
Hawkes, 1994, Appendix 1]. Because opening can occur directly from state 2, it is easy to
see that the shut state preceding the next opening may be quite short; there may be no sjourn

in state 3 before the next opening. When on the other hand, the channels are all initially in
state 3 (R), the channel must spend time both in state 3 and in state 2 before opening is
possible, and so a longer time is likely to elapse before an opening occurs.

As usual for a Markov process, these differences in the distributions depend entirely
on differences in areas rather than time constants. In the case of mechanism 59, there are
two shut states, so distributions of shut times are therefore a mixture of two exponentials.
The time constants for the two components are the same for all shut-time distributions,
including that for the first latency after a jump; but the area of the faster component will be
larger for channels that were initially in state 2 (AR) than it is for channels that were initially
in state 3 (R). The steady-state equivalent of this phenomenon has already been illustrated
in Section 10.3 and Figs. 13 and 14.

As an example, consider the mechanism in equation 59 with the following transition
rates (all in s™'):
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R® AR %0, Ags
1000 1000 (103)
3 2 1
(for example, we could have k,; = 10’M~'s™! and a concentration of 10 uM, giving the

binding rate as 100 s~!). The equilibrium shut-time distribution, calculated as described in
Colquhoun and Hawkes (1994) (see also Section 13; Chapter 20, this volume) is, in the
standard form of equation 25,

f(©) = ahje ™" + a\pe ™! (104)
where the time constants are
T, =1/ =04875ms and T, = 1/A, = 20.51 ms (105)
and the areas of the components are
a; = 04750 and a, = 0.5250 (106)
The mean length of a shut period at equilibrium is therefore
mean shut time = a;7; + a,7, = 11.00 ms (107)

Since, from equation 24, the mean lifetime of state 3 is 10 ms, and the mean lifetime of
state 2 is 0.5 ms, it is clear that shut times consist, on average, of a 2 — 3 — 2 transition
(the rate constants show that it is equally likely that a channel in state 2 will, at its next
transition, move to state 3 or state 1). This is for shut periods that start in state 2 and end
in state 2. However, if we consider a concentration jump from zero concentration to 10 pM,
the channels are initially all in state 3. The distribution of the latency until the first opening
will therefore be the distribution of shut times conditional on starting in state 3. This can
be found in the way given by Colquhoun and Hawkes (1994), but in this case the appropriate
probability would be Ps,(f) rather than P,,(z). The result is a distribution like that in equation
104 with the same rate constants, as given in equation 105, but with areas

a, = —0.02435 and a, = 1.02435 (108)
and
mean shut time = a;7; + a,7, = 21.00 ms (109)

In this case one of the areas is negative, which means that the distribution goes through a
maximum, as illustrated earlier; in other words, very short latencies are unlikely. Correspond-
ingly, the macroscopic current for such a jump would have a sigmoid start; the time constants
for the relaxation would be, from equation 62—64, 0.3778 ms and 2.205 ms, the former
having a negative amplitude.

After the first latency has elapsed, all openings and shuttings have exactly the same
distributions as at equilibrium (mean open time 1.00 ms; mean shut time 11 ms). This is a
consequence of the absence of correlations in this mechanism.
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11.2. Single Channels after a Jump in the Presence of Correlations

The characteristics of single-channel openings after a jump when correlations are present
have been considered by Colquhoun and Hawkes (1987) and by Ball et al. (1989). As an
example, consider the mechanism in equation (101c¢). This has been used by several authors
(e.g., Colquhoun and Sakmann, 1985) to describe the nicotinic acetylcholine receptor (see
also Section 13; Chapter 20, this volume; Colquhoun and Hawkes, 1982). In this context,
the mechanism may be written to show the binding of two agonist molecules (A) to the shut
(R) and open (R*) receptor, thus:

State State
number number

5 R
kﬁl][ 2

AR\————‘

2k 5 || kyp

AR Pr.

0

The experimental evidence suggests that the mean lifetime of open state 1 (the singly
liganded open state) is considerably shorter than that of open state 2 and that the mean
lifetimes of shut states 3 and 4 are short. This would account for the observed correlations,
as explained in Section 10.1. An example of the calculation of single-channel properties
after a jump is given by Colquhoun and Hawkes (1987) for this mechanism. They used the
rate constants that were found by Colquhoun and Sakmann (1985) to provide a fair description
of nicotinic receptor behaviour and used these values to predict the behaviour of channels
following a concentration jump from zero to 4 nM. The time constants were, of course, the
same for all distributions, but the areas changed such that the mean shut times were as follows:

® Mean latency to first opening 1539 s

® Mean shut time between first and second openings 1038 s

® Mean shut time between second and third openings 806.1 s
® Mean shut time between third and fourth openings 698.6 s

and so on, until the equilibrium mean shut time of 605.7 s is reached.

Similarly, mean lengths of the first, second, etc. openings following the jump were
0.754 ms, 1.029 ms, 1.156 ms, 1.215 ms and so on until the equilibrium mean open time
of 1.267 ms was attained. The calculation of these values, for a mechanism as complex ag
that in equation 110, cannot be written explicitly but requires the use of matrix methods (see
Section 13 below; Chapter 20, this volume; Colquhoun and Hawkes 1982, 1987). It has been
shown by Ball er al. (1989) that such measurements can be used to provide information
about mechanisms.

11.3. The Relationship between Single-Channel Currents and
Macroscopic Currents

From the experimental point of view, the relationship is simple: the macroscopic current
is just the sum or average of a set of single-channel records. Two schematic examples have
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already been shown, in Figs. 2 and 5, of the relationship between single-channel currents
and macroscopic currents. In both of these it was supposed for simplicity that the channels
open synchronously at 1 = 0 or, in other words, that the first latency was negligible. This
is not always true. An example of experimental measurements in which it is certainly not
true is shown in Fig. 15. This shows responses of a membrane patch that contained NMDA-
type glutamate receptors to application of the agonist (glutamate) for 1 ms. The patch probably
contained only one channel (see Section 8), and six individual responses are shown. The
average of these responses is shown at the top of the figure and is seen to follow a time
course that is typical of NMDA receptors, with a relatively slow rise time followed by a
slow double-exponential decay, with time constants, in this case, of T = 61.5 ms and 208
ms. In this experiment it is clear that the latency until the first opening occurs is sometimes
very long indeed, and this will have a profound effect on the time course of the macroscopic
current. For example, in the third trace from the top in Fig. 15, the first opening occurs
about 860 ms after the 1-ms pulse, and in the fifth trace the latency is about 1340 ms.
In order to predict, from some specified mechanism, the results of an experiment like
that shown in Fig. 15, we first note that the experiment involves two concentration jumps.
to 1 mM, the channels being initially in their

First, there is a jump from zero concentration
resting state. This is followed, 1 ms later, by a jump from 1 mM to zero. The initial condition

(i.e., the fraction of channels in each state) for the second jump is found during the calculation
of the response to the first jumps it is simply the fraction of channels in each state, p; (1), at
t = 1 ms. The methods for calculating the macroscopic (average) current have been mentioned

above and are described in Chapter 20 (this volume).

11.3.1. The Simplest Example of the Effect of First Latency

ct of nonsynchronous channel opening, it will be useful
to consider first the simplest possible case. This case concerns a hypothetical channel that,
after brief agonist application, produces an activation consisting of a single opening, after
the first latency has elapsed (for the NMDA receptor, the activation is actually a great deal
more complicated than a single opening). In Fig. 164, nine examples are shown of simulated
channels with a mean first latency of 1 ms and a mean open time of 10 ms (the variability
of both being described by simple exponential distributions). The average current (shown at
the top) is seen, not surprisingly, to have a rising phase that can be fitted with an exponential
with a time constant of about 1 ms, and the decay phase has a time constant of about 10
ms. Apart from being about ten times too slow, this example is similar to what happens at

a neuromuscular junction.
More surprising, perhaps,

In order to investigate the effe

are the results shown in Fig. 16B, in which the numbers are
reversed, and simulated channels have a mean first latency of 10 ms and a mean open time
of 1 ms. The averaged current shown at the top is seen to have essentially the same shape
asin Fig. 16A (though it is ten times smaller and considerably noisier relative to its amplitude).
Thus, in this latter case, the rate of decay reflects the duration of the first latency, whereas
the rate of rise represents the mean channel-open time. The reason for this result, which
seems paradoxical at first sight, can be seen from the simulations (e.g., the exponential
distribution of first latencies means that short latencies are more common than long ones)
and from the relevant theory, which was outlined in Section 9.1. The distribution of the time
from the stimulus until the channel shuts finally is simply the distribution of the sum of (1)
the first latency (mean length 1/B’, say), and (2) the length of the channel opening (mean
length 1/at, say). This distribution has already been found, as the convolution in equation
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Figure 15. Tllustration of first latency measurement. The lower section shows six individual responses, each
2000 ms in duration, to a 1-ms pulse of 1 mM glutamate. The time at which the command signal for the
pulse was applied is shown in the topmost trace (the actual concentration change at the patch started about
1 ms later). This membrane patch contained, almost certainly, only one active channel, and it is clear that
the latency before the first opening is often long (see text). The average of 122 such records is shown at the
top. The decay phase of the average (starting from ¢ = 37 ms) was fitted with two exponentials. Their time
constants were 61.5 ms and 208 ms (the latter accounts for 23.6% of the amplitude at the starting point for
the fit). (Data of B. Edmonds; outside-out patch from rat dentate gyrus granule cell at —60 mV, in solution
containing 5 uM glycine and 5 uM CNQX. Methods as in Edmonds and Colquhoun, 1992.)
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Figure 16. A simple simulation of a
synaptic current in which each chan-
nel is supposed to produce only a
single opening after an €xponentially
distributed latency. A: Mean latency
I ms, mean open time 10 ms, The
lower part shows nine examples of
simulated channels. The top trace is
the average of 1000 such channels;
the double-exponential curve fitted to
the average has v = 1.03 ms (ampli-
tude 1.11 pA), and 7 = 10.6 ms
(amplitude —1.11 pA). B: Similar,
but with a mean latency of 10 ms
and a mean open time of | ms. The
double-exponential curve fitted to the
average has T = (.76 ms (amplitude
0.092 pA) and 7 = 12.0 ms (ampli-
tude —0.091 pA).
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87. Since both intervals have been taken to be simple exponentials, fi®) = ae™ and fy(1) =
B’ e, the result, A7), is exactly as has already been given in equation 91. It has the form

of the difference between two exponentials, and it is the curve that has been fitted to the
averages in Fig. 16.

In this particular simple case, though not in
between the distribution, S(B), of the total event length, and the shape of the averaged current,
The time course of the current is given, apart from a scale factor, by the probability that a
channel is open at time ¢. This we shall denote Poen(t), and it can be found as follows. A
channel will be open at time ¢ if (1) the first latency is of length u, and (2) the channel stays
open for a time equal to or greater than t — u. The probability that a channel stays open
for a time t — u or longer is, from equation 21 the cumulative distribution

general, there is a very simple relationship

R(t — u) = e™v (111)

so, by an argument exactly like that used to arrive at equation 87, the probability that a
channel is open at time ¢ is
u=t
Pass® = [ fG0OR (@ — w) (112
This differs from equation 91 only by a factor of 1/a, the mean open lifetime, so

’

Popen(t) = f(t)/ o =

—— (e7P" — g7 (113)
which is, apart from its am

plitude, unchanged when o and B’ are interchanged. The amplitudes
of the two exponential co

mponents are equal and opposite, being, from equation 113,

BI
a=——— 114
@ B) 113
with a maximum at ¢, which is given by
_ In(B'/ov)
e (115)

The simulated average currents in Fig. 16 are indeed well fitted by these values.

11.3.2. The Effect of First Latency in General

If there is more than one sort of shut state
the possibility arises that the channel ma
of membrane potential) is applied. This
block mechanism discussed in Section 4 (

(which there invariably is for real channels),
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P,(t) = Prob(open at time tlopen at time 0). (116)

This result has been used, for example, by Aldrich et al. (1983) and by Horn and Vandenberg
(1984) for the interpretation of experiments on sodium channels, in which measurements of
first latency turned out to be important for investigations of the channel mechanism.

It is important to note that P, ,(¢) is the sort of probability that is used in the calculation
of macroscopic currents or noise; it does not specify that the channel should be open
throughout the time from 0 to ¢ (as would be the case for analysis of single channels; e.g.,
see Section 4.8) but merely that it was open at 0 and at 7, regardless of what happens in
between. In fact, P, ,(r) describes the time course of the current that would be found by
averaging single-channel records after aligning the starting points of the first opening in
each record.

In general, the expression for P,,(£) will be given by the sum of k — 1 exponentials
that have the time constants found for macroscopic relaxations (as in equation 4) (they will
be the eigenvalues of —Qj see Section 13 and Chapter 20, this volume). These time constants
will not, in general, be the same as those for any of the single-channel distributions. Thus,
although the first latency distribution is a ‘single-channel quantity’, P,,(¢) is not, and there
is, therefore, in general, no simple relationship between single-channel distributions and
macroscopic currents.

In particular, it is impossible to predict the response 1o a jump from measurements of
steady-state single-channel recordings. This is generally true, though if the single channel
recordings were made under a range of conditions and were detailed enough to allow complete
identification of the mechanism and all its rate constants (see Section 12), then it would of
course be possible to predict the time course of macroscopic currents. This was illustrated
by Edmonds and Colquhoun (1992), who show that simple averaging of aligned channel
activations (measured in steady-state records) does not reproduce the shape of the macroscopic
currents. However, this procedure would work, to a good approximation, for muscle-type
nicotinic receptors, which produce compact bursts of openings with a very short first latency
and are therefore close to the situation illustrated in Fig. 2.

If there is more than one open state, then the result stated above can be further generalized,
using matrix methods, by what amounts to using a separate first-latency distribution for entry
into each of the open states (see Section 13 and Chapter 20, this volume).

12. The Time Interval Omission Problem

The filtering effect of the recording apparatus, together with noise and sampling the
signal at regularly spaced points in time, means that brief openings or shuttings of the ion
channel will not be detectable. This will cause a distortion of the histograms of the distributions
of open times and shut times that can be quite serious (see example below).

12.1. Definition of the Problem

We suppose in what follows that all events that are shorter than some fixed resolution
or dead time (denote &, for open times, &, for shut times) are not detected, whereas all events
longer than this are detected and measured accurately. The resolution is usually not well
defined, but may be imposed retrospectively on the measurements by concatenating any
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observed shut time below & with the open times on each side of it to produce one long
“apparent opening.” The procedures necessary for imposition of a fixed dead time are
discussed in Chapter 19 (this volume, Section 5.2). The effect on the distribution of open
times that is caused by missing open times that are shorter than &, is easily allowed for (see
Section 6.8.1 of Chapter 19, this volume). But the concatenation of adjacent open times that
occurs when the short shut time separating them is missed is potentially far more serious
and may cause openings to appear to be far longer than they really are.

12.1.1. Dependence on the Method of Analysis of Experimental Records

Before any attempt can be made to make allowance for missed events, the problem
must be formulated precisely. The problem is to decide how to define what it is that is
actually measured when an experimental record is analyzed. The answer to this question
will depend, to some extent, on the method that is used for the analysis. If a threshold-
crossing method is used, it seems natural to define the dead time as the duration of an event
that is just long enough for the signal to reach the threshold (in the absence of noise). There
are two problems with this definition. First, the universal presence of noise will mean that
some events that are longer than the dead time will be missed, and some events that are
shorter than the dead time will be detected (see Chapter 19, this volume). Second, as pointed
out by Magleby and Weiss (1990a), events that are both shorter than the dead time but are
close together may sum to produce a signal that crosses the threshold. Both of these problems
are less severe if the record is fitted by time-course fitting with subsequent imposition of a
fixed dead time (see Chapter 19, this volume, Section 5.2).

Ideally, the method used for missed-event correction should take into account the actual
properties of the method used for analysis. Draber and Schultze (1994) have made an attempt
to do this (though for an analysis method that has not yet been much used in practice). The
only realistic method for doing this is the (very slow) repeated simulation of the entire
analysis, as proposed by Magleby and Weiss (1990a).

We now define a theoretical quantity, the apparent open time. This quantity is intended
to be, as far as possible, what would actually be measured from an experimental record, the
observed open time. In fact, this distinction will often be neglected, and both quantities
referred to as apparent. The mean length of apparent openings will be denoted °p, (where
the superscript e stands for effective). For the purpose of the theory, an apparent opening is
defined as starting with an opening longer than &, (which is therefore visible); this is followed
by any number of openings, which may be of any length but are separated by gaps that are
all shorter than & and are therefore not detected; this process is ended when a shut time in
excess of & is observed. Short openings, less than £, are similarly treated to obtain “apparent
shut times’. The extent to which this definition mimics reality will, as mentioned above,
depend on the method used to analyze experimental records. A run of short random openings
and shuttings will, from time to time, produce signals of quite unrecognizable shape, so it
is impossible to anticipate all possibilities. At least it is impossible to do so in any analysis
program that allows the operator to approve or disapprove the fitted durations, and, as
explained elsewhere, there are good reasons, unconnected with the missed-events problem,
why it is always desirable to inspect what the computer is doing to your data. There will
inevitably (and probably quite rightly) be a subjective element in the operator’s response to
oddly shaped signals. Fortunately, such oddities are rare in most data and so should not give
rise to serious errors.
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12.1.2. Dependence on the Channel Mechanism

It is an unfortunate fact that in order to make proper allowance for missed events, it is
necessary to postulate a kinetic mechanism for the operation of the ion channel. When
substantial numbers of both brief openings and brief shuttings are missed, very little can be
done without a realistic knowledge of the mechanism, as is made clear by the discussion
below. However, it is quite often the case, to a first approximation at least, that most openings
are detected but many short gaps are missed (or, more rarely, the other way round). In this
case, corrections can be made without detailed knowledge of the mechanism. When most
openings are detected, the shut-time distribution will (apart from the lack of values below
&) be quite accurate; i.e., it will have approximately the correct time constants (see Fig. 18,
for example). We can, therefore, obtain a realistic estimate of the number (and duration) of
missed shut times simply by extrapolating the fitted shut-time distribution to ¢t = 0. This is
essentially the procedure used by Colquhoun and Sakmann (1985), and it is given below
(see equation 124). Even in this case, however, it was necessary to assume something about
mechanisms in order to do the correction. The reason for this is that, in their data, the
distribution of (apparent) open times or of burst lengths had two exponential components,
50, although an estimate could be made of the number of brief shuttings that were missed,
there was no way of knowing whether they were missed from ‘long bursts’ or from ‘short
bursts’. The data suggested that short bursts contained few short gaps, so, in order to perform
the correction, it was assumed that all the missed gaps were missed from long bursts. This
procedure was subsequently shown to behave quite well when tested by the exact procedures
discussed below, but there can be no guarantee that it will always do so.

We shall first discuss the (oversimplified) case in which the system has only one shut
state and one open state.

12.2. The Two-State Case

Suppose the true open times and shut times both follow simple exponential distributions
with means ., and p, respectively. Then we have

P(shut time > &) = e 5/ks (117)

Mean number of openings per apparent opening = 1/e~5%"#s = g&/bs (118)

It is well known (see Chapter 19, this volume, Sections 6.6 and 6.8) that for an exponen-
tial distribution

Mean length of shuttings longer than & = & + (119)

Mean of shuttings less than & = [, — (& + e 5/W]/(1 — e 5/bs) (120)

because e 5/¥s X (expression 119) + (I — e %Ms) X (expression 120) must equal ., the
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overall mean shut time. The mean apparent open time, denoted °p,, is therefore &l
Poe®Hs + (€8s — 1) X (expression 120), as there is one less shutting than opening contribu-
ing to the apparent open time. Thus,

“bo = &0 + (o + ped™s — (& + py) (121)

Similarly, the mean apparent shut time is

ers == gs + (p'o + Ms)egomo I (go it }‘Lo) (122)

The values of °u, and °p can be estimated from the data by averaging the observed open
and shut times; &, and & are known, so that equations 121 and 122 are a pair of nonlinear
simultaneous equations that can be solved numerically for the true means Mo and . For
example, obtain an expression for p, from equation 122 and substitute it into equation 12]
to obtain an equation in w, only, that can be solved by bisection. It turns out that these
equations usually have two pairs of solutions. Suppose, for example, that & = & = 200 ps,
‘o = 0.6 ms, and °p, = 2.0 ms. Then, there is a ‘slow’ solution (pn, = 299.0 WS, Mg =
878.7 ps) and a ‘fast’ solution (p, = 106.3 ws, w, = 214.8 ps). The slow solution implies,
for example, that on average an observed shut time comprises 1.95 shut times separated by
0.95 (short) open times, whereas the equivalent figures for the fast case are 6.56 and 5.56.
In principle, the ambiguity is not quite complete because the forms of the distributions of
observed times are predicted to be different (though they have the same means) for these
two solutions, but in practice the difference may be too small to be useful (Hawkes et al.,
1990). Furthermore with the fast solution consisting of rapid alternation of openings and
shuttings of duration comparable to the resolution, the apparent openings would have the
appearance of a noisy opening of reduced amplitude.

This problem has been further studied using an approximate likelihood method by Yeo
et al. (1988), Milne er al. (1989), and Ball et al. (1990), yielding a likelihood with two
almost equally high peaks. They showed that the two solutions could be resolved by making
additional analyses in which &, and & are changed, the real solution remains the same, and
the false one is altered.

The above model, assuming fixed resolution, is used throughout this section, but Draber
and Schultze (1994), following Magleby and Weiss (1990a), used a (theoretically) specified
model of a detector (see above), and in the two-state problem they obtain the alternative
result, in the case §, = & = &,

1
(,\Lo o “‘s)

22
X {__ Hobs [1— e(§/us—§/uo)] + §(M0 + ) — uge(ﬁluré/u& — ,J“o“'s} (123)
(Mo = Ks)

e

Mo =

with a similar result for °w,, the subscripts o and s being interchanged. These results are
close to those given by equations 121 and 122 if ., and p, are greater than about 2.

12.2.1. The Case when Only Gaps Are Missed

If openings are long enough that very few are missed, then the results simplify. Thus,
if § < p,, equation 122 reduces to ®w, = & + .. The openings, however, are still extended




oun and Alan G. Hawkes

o, iS therefore &, +
an opening contribut-

(121)

(122)
1g the observed open
€ a pair of nonlinear
eans ., and p,. For
it into equation 121
;turns out that these
at &, = & = 200 ps,
o = 299.0 ps, ps =
ow solution implies,
it times separated by
e are 6.56 and 5.56.
f the distributions of

e means) for these
seful (Hawkes er al.,
ion of openings and
ings would have the

&nood method by Yeo
likelihood with two
> resolved by making
mains the same, and
S section, but Draber

oretically) specified
lbtain the alternative

|

E - uous} (123)

|

2d. These results are
than about 2£.

|

sults simplify. Thus,
}er, are still extended

:
:
:
:
f
|

:
i

Stochastic Interpretation of Mechanisms

457

by missing gaps, but, as pk is now known from this result, equation 121 can be solved for

Ho 2

Bo = e 5o — &) T (€ + po)l — Ms (124)

Analogous results, interchanging o and s, can be obtained if shut times are long.

12.2.2. Bursts of Openings

We consider here only the case in which most openings are detected but many shut
times within a burst are undetected. As before, this implies that gaps will rarely be extended
by undetected openings, SO if p, now denotes the true mean length of gaps within bursts,
the observed mean length of such gaps will again be & + . Since we have assumed that
most openings are detectable, the mean length of the observed burst will be close to the true
mean burst length. Thus, both intraburst gap lengths and burst lengths can be estimated from
the data. However, the apparent openings will be longer than the true openings, and the
observed number of openings per burst will be correspondingly too small. It is for this reason

that Colquhoun and Sakmann (1985) presented primarily distributions of gap lengths and

burst lengths but not those of apparent open times oOr of the number of apparent openings

per burst.

Corrected means for the last two distributions can be obtained as follows for the case

in which the true openings and the true gaps within a burst each have simple exponential
distributions. The burst distribution is fitted to give an estimate of the mean burst length,
s, and the number of bursts, Ny each of which should be close to the true values. The
distribution of lengths of gaps within bursts is fitted to give estimates of their true length,
e, and of their true number, N,, which may be considerably greater than the observed
number, ng = Nge“gs/“g. The true number of gaps per burst, pr, is estimated as the total
number of gaps divided by the total number of bursts, s0 Py = Ng/Nos:. The true mean open
time can be estimated by noting that the mean total shut time per burst including undetected

gaps, is ghr, SO

mean open time per burst
o = : : = (st — (e + 1 12
" mean number of openings per burst (ke = b/ (i ) (125)

This is essentially the correction employed by Colquhoun and Sakmann (1985).

12.3. The General Markov Model

The previous section discussed only the two-state case and was concerned only with
the means of the apparent observed open times and of observed shut times, according to
particular assumptions about how these arise from the inability to observe small intervals.
We need to extend this to models of channel action with any number of shut states and open
states: we also need to predict the distributions of observed quantities, not only their means.
So far, this has been achieved only in the case where all open states have the same conductance.
Several approximate methods have been described, for example by Blatz and Magleby
(1986), Yeo et al. (1988), and Crouzy and Sigworth (1990), in each case approximating the
distributions by mixtures of exponential distributions. An exact solution in terms of Laplace
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transforms was obtained by Ball and Sansom (1988b) following earlier work by Roux and
Sauvé (1985).

Hawkes et al. (1990) obtained the exact algebraic forms of these probability density
functions in the case & = &; they presented some numerical examples that suggested that
the best of the mixed-exponential approximations was that of Crouzy and Sigworth (1990).
Unlike the distributions of true open times or shut times, they are not mixtures of exponentials
but are sums of exponentials multiplied by polynomials in #; a different form holds over
different ranges of length &, so that over the interval [&r < t < &(r + 1)] the multiplying
polynomials are of degree (r — 1); the density is, of course, zero for ¢ < §. These distributions
are reasonably easy to compute for small but get progressively more complicated as ¢
increases and eventually become numerically unstable. An alternative approach by Ball and
Yeo (1994) is based on numerical solution of a system of integral equations. Ball et al.
(1991, 1993b) obtained a solution, in terms of Laplace transforms, in the more general setting
of semi-Markov processes (which includes fractal and diffusion models as well as the Markov
model discussed here). Ball et al. (1993a) showed that a general result of Hawkes et al.
(1990), from which the above result specific to Markov models was obtained, can be extended
into this more general setting.

Jalali and Hawkes (1992a,b) (see also Hawkes et al., 1992) obtained asymptotic forms
for these probability densities that are extremely accurate except possibly for quite small
values of 7. They recommend using the exact form for ¢ < 3£ and the asymptotic form for
t > 3. Brief details are given in Section 13.7. The asymptotic distribution not only has the
form of a mixture of exponentials, but it also has the same number of exponential components
as the true distribution (that which would be found if no intervals were missed). However,
the values of the time constants and of their associated areas may be quite different. It is
this asymptotic form that would be estimated when fitting a mixture of exponentials to
experimentally observed time intervals using the methods described in Chapter 19 (this
volume, Section 6.8).

We consider the mechanism of scheme 110 (see also equation 127), which has two
open states and three shut states, with parameter values a; = 3000 s~!, o, = 500 57!, By
=15s"", B, = 15000 s7", kyy =5 X 107 M Vs~ ke = ki =5 X 18 M's™!, k) 8
k_, = 2000 s™', k2, = (1/3) s~', and agonist concentration x, = 0.1 pM. A set of data, in
the form of a sequence of open and shut times, was simulated from this model; a resolution
of 50 ws (for both open and shut times) was then imposed on the record (see Chapter 19,
this volume, Section 5.2) to produce a sequence of 10,240 apparent open times alternating
with 10,240 apparent shut times. We will refer to this as the simulation model for the
remainder of this section.

The true open time distribution has two exponential components with time constants
.00 ms and 0.328 ms with corresponding areas of 0.928 and 0.072, giving an overall mean
of 1.88 ms. Figure 17 shows the theoretical distribution of the logarithm of apparent open
times (see Section 5.1.2 of Chapter 19, this volume), and this compares well with a histogram
arising from the simulation. The true distribution of open times is shown for comparison.
Compared with the true distribution, the distribution of apparent open times has been shifted
to the right, having a mean of 3.52 ms rather than 1.88 ms; this shift is not caused by missing
the short open times but results from missing the short shut times.

The distribution of apparent open times does not have a mixed exponential form for
small 7, but for r > 3£ it is very well approximated by the asymptotic distribution, which is
a mixture of exponentials. This gives us another way of comparing the true and apparent
distributions. First note that the pdf of apparent open times is zero below the dead time,
t = &, whereas the true open time pdf starts at £ = 0; thus, in order to compare the relative
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but the longer one has almost doubled. This happens bec.au
used for the example, most of the short shut times occur in (an
the “long bursts (see also Section 12.1).

Let us turn now to the distribution of shut times. The true distribution of all shut times

ms, and 53 us, with areas of 0.262, 0.008, and 0.730, respectively. The. distribution gf
apparent shut times, for r > 3&, is well approximated by the asymptotic form of this
distribution, which is a mixture of three €xponentials with time constants of 3952 ms, 0.485
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Figure 18. Probability density of the logarithm of shut times for the model defined in the text. The solid
line is the theoretical distribution of apparent shut times when the deadtime £ = 50 ps. The histogram show§
the distribution of 10,240 shut times, which were simulated on the basis of this model after imposition ofa
50-ps resolution. The dashed line showing the true distribution of shut times, scaled as described for Fig
17, is virtually indistinguishable from the distribution of apparent shut times when ¢ > &.

few open times will be missed. Thus, the distribution of shut times is almost undistortedin
the sense that fitting the observed values with exponentials will give something close to the

considerably increased, from 993 ms to 1855 ms, because of missing short shut times).

12.4. Joint Distributions of Adjacent Intervals

Magleby and co-workers (Blatz and Magleby, 1989; Weiss and Magleby, 1989; McManus
and Magleby, 1989; Magleby and Weiss, 1990a,b) have used extensive simulation to show
that the joint distribution of adjacent apparent open times and shut times can be very useful
in distinguishing between different mechanisms that have very similar overall distribution§
of these variables when considered separately. They also use them for parameter estimation.
The extra information concerning the relationship between the durations of neighbouring
intervals is very valuable (see Sections 10 and 11).

The methods of Hawkes et al. (1992) described above can also be used to obtain the
theoretical joint distributions of the adjacent apparent open and closed intervals, allowing
for time interval omission. The appropriate formulas are outlined in Section 13.7, more
detailed formulas and software to calculate and display these distributions are given by
Srodzinski (1994).

true time constants and areas (though the overall average of the observed values would bes
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Figure 19A shows the distribution of apparent open times that are adjacent to short
shut times (i.e., those less than 150 ws) for our simulation example. Note again the good
correspondence between theory and simulation. Compared with the overall distribution of
apparent open times there are relatively few short open times. Figure 19B

and apparent shut times. This is illustrated another way in Fig. 19C, which shows how the
Mmean apparent open time, calculated from the above theory, decreases for intervals adjacent
to larger apparent shut times. This graph shows a continuous but very nonlinear decline. In
practice, shut-time ranges must be used, as in the experimental example in Fig. 12, so the
graph is not continuous. The model and parameter values used for Figs. 17 to 19 are based
on observations for the frog muscle nicotinic receptor; the form of the decline for the NMDA
receptor, illustrated in Fig. 12, is more linear than that plotted in Fig. 19C.

It is worth noting that time interval omission can induce a correlation not present in
the true record. For example, model I of Blatz and Magleby (1989) has two open states

Blatz and Magleby’s model. Modify our model so that direct interchange between the two

12.5. Maximum-Likelihood Fitting

The ability to calculate the theoretical distributions of things that are actually observed
(rather than of what would be observed if the resolution was perfect) opens the way to fitting
a specified mechanism directly to the data. Previously, one could only fit empirical mixtures
of exponentials separately to open times, shut times, bursts lengths, etc., but to interpret
these results in terms of a mechanism and to estimate from them the values of the underlying

tely and in simple cases. In any case,
efficient. It is, for example, far from
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Figure 19. A shows the theoretical distribution (solid line) of apparent open times that are adjacent to short
apparent shut times (less than 150 ws). The histogram shows the distribution of simulated (see text) values
of the same quantity. The dashed line corresponds to the overall theoretical distribution of apparent open
times, given in Fig. 17. B shows similar results for openings adjacent to long apparent shut times (greater
than 10 ms). C shows the plot of the theoretical mean of apparent open times that are adjacent to apparent
shut times of a given duration, against the logarithm of the shut time.
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This calculation takes the form of an enormous number of matrix multiplications, the calcula-
tion for the first opening provides the appropriate initial condition for the calculation for the
subsequent shut time, which in turn provides an appropriate initial condition for the next
opening, and so on up to the end of the data (see Section 13.7). Thus, the order in which
openings and shuttings occur, and so information about correlations between the durations
of neighbouring intervals, is taken into account correctly; in contrast, the separate distributions
of apparent open and shut times, described above, lose this information. The calculations
are done in a manner similar to that used by Ball and Sansom (1989), following earlier work
by Horn and Lange (1983), assuming ideal data (§ = 0).

With this approach, the parameters to be fitted are the actual mass-action rate constants
in the reaction mechanism (nof empirical time constants and areas). The values of these
parameters are adjusted by a suitable search routine so as to maximize the likelihood for the
entire record. We have found this to be quite feasible on a fast PC for a record consisting
of several thousand intervals. Furthermore, it is possible to fit simultaneously data from several
different sorts of measurement, for example, recordings made with different concentrations of
agonist.

Thus, we do not have to fit separately all of the sorts of distribution mentioned above.
However, it will be useful for model validation to compare observed histograms with theoreti-
cal distributions calculated from the model, especially the joint distributions of adjacent open
and shut times, using values of the parameters fitted by the maximum-likelihood method.

The likelihood itself can be used to judge the relative merits of alternative postulated
mechanisms. If each of the proposed mechanisms is fitted to the same data, the relative
plausibility of each mechanism can be assessed from how large its maximised likelihood is;
this was done, for example, by Horn and Vandenberg (1984) (without missed-event correc-
tion).

On the basis of the data from our simulation example above, the free parameters were
adjusted (by a simplex method) to maximise the likelihood of the sequence. A comparison
of the true and estimated parameter values is given in Table I. These agree very well, but
in some cases, especially with less data, one would expect that some parameters in a
mechanism would be estimated quite well and others poorly. This feature depends on the
nature of the mechanism (e.g., rates leading from a state that is rarely visited will be poorly
estimated) and is found in other methods of estimation (see Fredkin and Rice, 1991).

Table I. Comparison of True and Estimated Parameters from a Simulation of Mechanism 110

Parameter True value Estimated value® Units
oy 3000 2848 s~
a, 500 521.4 s7!
By 15 15.74 s~
B2 15,000 15,592 57!
2k 4y 1 x 108 9.529 X 10’ M~ !s7!
ko 5 x 108 5.103 x 108 M™ls™!
k%, 5 x 108 5.103 x 108 M ls™!
k_y 2000 1960 s~
2k o 4000 3919 s 4
2k*, 0.666667 0.7243 s7!
“Note that parameter estimates have been constrained so that k_; = k_, and k., = k%, and microscopic reversibility

is preserved.
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13. A More General Approach to the Analysis of Single-Channel
Behaviour

It would involve a great deal of work if the sort of analysis given for the channel-block
mechanism (Section 4) had to be repeated for every type of mechanism that one wished to
consider. Furthermore, it is found that the approach given above is not sufficiently general
to allow analysis of some mechanisms that are of direct experimental interest. In particular,
mechanisms with more than one open state and/or cyclic reactions cannot be analyzed by
the relatively simple methods used so far. Consider, for example, the mechanism in equation
110, which has two open states (labelled 1 and 2) and three shut states.

We shall assume that the conductance of the two open states is the same, so, during a
single opening, there may be any number of oscillations between them: AR* = A,R*.
Similarly a gap within a burst may involve any number of oscillations between AR = AjR.
The analysis is further complicated by the fact that there are two different ways in which
the opening may start (via AR — AR* or A;R — A,R*) and, correspondingly, two routes
by which the opening may end. Clearly, the probability that an opening starts by one of
these routes rather than the other will depend on how the previous opening ended. One
would expect, for example, that the first opening in a burst is more likely to start via AR
—s AR* than subsequent openings because the start of a burst must involve passage through
AR, whereas a gap within a burst may be spent entirely in AR

In Section 4.6, the distribution of the number of openings per burst was found by simple
multiplication of probabilities for the routes through the burst. In the present example there
are many different possible routes through a burst, and the only way in which it is practicable
to find the appropriate combination of probabilities is to describe them by matrix multiplica-
tion. It turns out that matrix notation is very convenient for this sort of problem. By its use
one can write down just a few equations for equilibrium single-channel behaviour (Colquhoun
and Hawkes, 1982). This enables a single computer program to be written that will evaluate
numerically the predicted behaviour of any mechanism, given only the transition rates between
the various states. Chapter 20 (this volume) contains details of various matrix results and
methods of computation; we suggest that it be read in conjunction with this section.

13.1. Specification of Transition Rates

The transition rates are most conveniently specified in a table or matrix (denoted Q),
with the entry in the ith row and jth column (denoted g;)) representing the transition rate
from state i to state j (as already defined in equation 7). This fills the whole table except
for the diagonal elements (i = j). These, it turns out, are most conveniently filled with a
number such that the sum of the entries in each row is zero. Thus, from rule 24, —1/q;; is
the mean lifetime of a sojourn in the ith state, as is clear from the following examples. For
the simple channel-block mechanism (equation 29) with k = 3 states, we have

1 2 3
i| —(o + kigxp) kipxsg «
Q=, kg k. O (126)
B’ g =P

Similarly, for the more complex agonist mechanism in scheme 110, with k = 5 states,
we have
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1 2 3 4 5
([ —(ay + k¥yxa) Toxa 0 o 0 ]
2 2k*, —(ay + 2k*,) a 0 0
Q= 0 B,  —(B:+2% 2%, 0
4 B, 0 kioxa —(Br * kyaxa ko) ko
sL 0 0 0 2k xa — 2k x|
(127)

where x, is the agonist concentration. This matrix, with some specific parameter values, was
used for some numerical examples in Section 12 and in Chapter 20 (this volume). Notice
that these two examples illustrate the convenient numbering convention for the states that
underlies the notation introduced by Colquhoun and Hawkes (1982). The open states have
the lowest numbers (1, . .., ky), and shut states have the higher numbers. For the purpose
of analysis of bursts, short-lived shut states are given lower numbers than long-lived shut
states. This convention allows convenient partitioning of the Q matrix into subsections. This
partitioning is shown explicitly in Section 2 of Chapter 20 (this volume), and is used
throughout this section.

13.2. Derivation of Probabilities

The probabilities that are needed for noise and relaxation analysis, which were defined
as P;;(¢) in equation 8, can be considered as elements of a matrix, which we shall denote
P(?). It can be found by solution of a differential equation:

dP(n)/dt = P(1)Q (128)
The solution is, quite generally,
P@) = ¥ (129)

This has a matrix in the exponent, but its evaluation requires only operations of matrix
addition and multiplication, because the exponential is defined in terms of its series expansion:

eV =1+ Qt+ (Q*/2! + --- (130)

where I is a unit matrix (unit diagonals, zeroes elsewhere). In practice, this is not the most
convenient way to evaluate the exponential term (see Chapter 20, this volume); in fact, each
element of P(7) (and hence the relaxation or the autocovariance function of noise) can be
written in terms of the sum of k — 1 exponential terms of the form

Pij(1) = pj(®) + wie ™M + wye M 4 .- (131)
In this expression p;(®) is the equilibrium probability that the system is in state j, which

P;;(r) must approach after a long time (¢ — ). The coefficients w; can be determined from
Q by the methods described in Chapter 20 (this volume; see Colquhoun and Hawkes, 1977,
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1981, 1982, for details). The rate constants A, which were found by solution of a quadratic
in equations 30 and 53, are found, in general, as the solution of a polynomial of degree
k — 1 that can be derived from Q. They are known as the eigenvalues of Q (actually, the
eigenvalues of —Q). One of the eigenvalues is zero, as Q is singular, leaving only k — |
further eigenvalues to find. Standard computer subroutines exist for finding them. These
methods are discussed in Chapter 20 (this volume) together with the use of e in describing
the relaxation of the macroscopic current toward equilibrium following a jump. General
methods for the calculation of the equilibrium occupancies directly from the Q matrix are
given in Section 3 of Chapter 20 (this volume).

For the analysis of single channels, however, we usually need a different sort of probabil-
ity, one that requires that we stay within a specific subset of states throughout the whole
time from O to z. An example of such a probability was defined in equation 47 and explicitly
derived in equations 48-54 when the distribution of the burst length for the channel block
mechanism (equation 29) was considered. In that case, we specified in equation 47 that we
stayed within the burst (i.e., in state 1 or 2) from O to . It will be convenient to give a
symbol €, say, to this set of ‘burst states’ and to denote the number of such states as kg (kg
= 2 in this case). Similarly, in the case of the more complex agonist mechanism of equation
110, € would consist of states 1, 2, 3, and 4, and kg = 4. Probabilities such as that in
equation 47 will be denoted, by analogy with equation 8, as P/;(f), in which the subscripts
i and j can stand for any of the € states. In the case of burst length, we can appropriately
denote the (kg X kg) matrix of such quantities as Pgg(?), and it is given quite generally by

Pis(r) = €2¥¢! (132)

where Qg is the submatrix of Q relevant to the burst states. In the case of the simple
channel-block mechanism, for example, this is the top left-hand corner of expression 126:

o + .
Qs = (o + kypxp) k_ BXB (133)
k_g k_g

Notice that equation 132 is analogous to 129, although it is rather simpler because it
involves a smaller matrix. The upper left-hand element of Py () is Py,(2), which has already
been derived in equation 52. In general, the elements of Py«(7) can be expressed as the sum
of k¢ exponential terms; the rate constants for these terms (e.g., those given in equation 53
for simple channel block) are given by the eigenvalues of —Qgg (which are kg in number,
not kg — 1, because Qgg, unlike Q, is not singular).

13.3. The Open-Time and Shut-Time Distributions

A similar procedure can be followed for any other specified subset of states. The result
will always involve a sum of exponential terms, the number of terms being equal to the
number of states. For example, let us denote the set of open states as o; this would contain
state 1 only for the simple mechanisms in equations 1 and 59, but it would contain states |
and 2 for the more complex mechanism in equation 110. Again, we can define the subsection
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of Q that concerns transitions within A states; for the mechanism in equation 110, this
consists of the top left-hand 2 X 2 section of matrix 127:

Quy = ’:“(011 + k%yxa) k%oxa :, (134)

2k*, —(ap + 2k*y)

whereas for the channel-block mech

anism 29, with only one open state, we have simply,
from equation 126:

Qus = —(a + kypxp). (135)

In general, we can write (see Colquhoun and Hawkes 1977, 1981, 1982) the distribution
of open times as

J@) = de%¥tat(—Qy)uy (136)

with mean

m = &(—Qylpuy

An alternative way to write the same thing is

) = 6Guz(tug (137)

where F represents the set of shut states, and we define (as in equation 142 below)

Gug(t) = eQuta'Q 4y

The result in equation 136 is an exact matrix anal
in equation 22 with =Quq replacing . All th
which specifies the relative probabilities of an
and a final vector, uy, with ks (the number
simple appearance of equation 136, it is perfe
however complex.

In general, different classes of open tim

ogue of the simple exponential distribution
at has been added are an initial vector o,
opening starting in each of the open states,
of open states) unit elements. Despite the
ctly general; it works for any mechanism,

es will have different distributions, determined
by supplying an appropriate initial vector ¢. For example, the distribution of all open times

in a steady-state record is found by using ¢y, defined in Chapter 20 (this volume, equation
42). The appropriate & for open times after a jump are considered below, and cases such as

, that the open time
is described by a simple exponential distribution with mean /(o + k,pxp).

More generally, equation 136 can be expressed without use of matrices as a sum of
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exponential terms, the number of terms being equal to the number of open states and the
rate constants being the eigenvalues of —Q,,, as described in Chapter 20 (this volume).
The distribution of shut times is exactly equivalent to that for open times given above,
but we use the matrix Qg4 instead of Q. and replace uy by a vector ug containing kg unit
elements, where % denotes the set of all shut states (kg in number). The initial (1 X kg)
vector ¢ now gives the probability that a shut period starts in each of the shut states (in the

steady state this would be given by &,; see equation 50 of Chapter 20, this volume). Thus,
the probability density is

f@®) = $e¥*(—Qgg)ug (138)

with mean

m = &(—Qzj)ug (139)

This distribution can be expressed as a sum of exponential terms, the number of terms being
equal to the number of shut states, and the rate constants being the eigenvalues of —Q
as described in Chapter 20 (this volume).

We can now see, in matrix terms, why the distribution of all shut periods was so simple
for the simple channel-block mechanism. The shut states are states 2 and 3 in this case, 0 Qzg
consists of the lower right-hand 2 X 2 section of equation 126. The lack of intercommunication
between the shut states in this mechanism is reflected by the fact that this submatrix is
diagonal (elements not on the diagonal are zero); consequently, the eigenvalues of —(Q
are simply its diagonal elements, k_g and B’.

FF

FF

13.4. A General Approach to Bursts of Ion-Channel Openings

The analysis of bursts of openings can be approached in a way that is valid for any
mechanism of the sort discussed above. The analysis given by Colquhoun and Hawkes (1982)
starts by dividing the k states of the system into three subsets defined as follows: (1) open
states, denoted & (ky in number), (2) short-lived shut states, denoted B (kg in number), and
(3) long-lived shut states, denoted 6 (k¢ in number). The short-lived shut states (%) are
defined such that any sojourn in this set of states is brief enough to be deemed a gap within
a burst, whereas a sojourn in € would be deemed a gap between bursts. This is illustrated
schematically in Fig. 20. The division into subsets is, of course, arbitrary; it is part of our
hypothesis about how the observations should be interpreted. Furthermore, the division may
depend on the conditions of the experiment (e.g., ligand concentrations) as well as on the
mechanism itself,

Take, as an example, the agonist mechanism in equation 110. The set of open states,
A, is made up of states 1 and 2. For most plausible values of the rate constants, the lifetimes
of shut states 3 and 4 will be short, so they constitute set B. At low agonist concentration
(but not otherwise), the lifetimes of the vacant state, 5, will be long, so it is the sole member
of set 6. The transition rates for the mechanism, which are tabulated in matrix 127, can now
be divided up according to this subdivision of states. For example, transition rates among
open states are in the ky X ky matrix Q. that has already been defined in equation 134.
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The ky X kg matrix of such quantities we denote G ya(0). It can be calculated simply as
Gug(r) = eQa'Q,, (142)

The ky X ky matrix Pyy(t) = eQutar analogous to equation 132, can be expressed as the

sum of ky matrices multiplied by scalar exponential terms, as described in Chapter 20
(this volume).

13.4.1. The Number of Openings per Burst

In Section 4.6, the distribution of the numb
simple mechanism. For more complex mechanisms, Quantities like the 1, used there are no
longer convenient. We wish to know the probabilities for transitions from, for example, o
states to 9 states regardless of when this transition occurs. The simple quantity 1, is replaced
by a matrix of transition probabilities, denoted simply G (the argument, f, is omitted to

Gyq :f Gug(t)dt = ~(Qua) 'Qug
0

which can be found directly from the relevant subsections of Q defined above, Alternatively,
Wwe can take the Laplace transform of equation 142; the result for matrices is exactly analogous
to that given for the simple exponential in equation 89:

LIGun(] = Gig(s) = (sI — Qust) ' Qg (144)
The integration in equation 143 is equivalent to setting s = 0 in the Laplace transform,

which gives the same result as in 143. Thus, we can also define Gyg, as G#5(0). Equivalent
distributions involving transition from the R states to the oA states are given by

Gay(t) = e®@niQy, (145)

Gasu = (—Quz) " 'Qgy (146)

With the help of expressions such as this, we can, for example, write quite generally,
for any mechanism, the probability that a burst contains r openings as

P(r) = by(GupGay) (1 — GuaGag)uy (147)
with mean

m = by(I — GypGgy)'uy,
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These are matrix analogues of the simple expressions given in equations 36 and 38, with
the matrix Gy;Ggy describing the transitions from open to brief-shut and back to open,
rather than m,m,,. The only extra features that are needed (and only if there is more than
one open state) are the initial vector ¢y, which is introduced to give the relative probabilities
of a burst starting in each of the open states (see Section 6 of Chapter 20, this volume), and
the usual vector of unit values, uy.

As described in Chapter 20 (this volume), the distribution in equation 147 can be

expressed, without use of matrices, as a mixture of geometric distributions (as in equation
58 of Chapter 19)

P() = Y a(1 = p)p™!

L

where the p; values are given by the eigenvalues of GunGay, and q; is the area of the ith
component. The number of proper (p; # 0) geometric components is the rank of the matrix
GGy, which is at most (almost always equal to) the direct connectivity between & and
B (see Section 10) and therefore does not exceed the smaller of k, and kg. If the number
of proper components is less than k , there is also a component corresponding to zero
eigenvalues, p = 0, which contributes to P(1) but not to any other P(r) (because 07! is zero
for r > 1, but 0° is taken as 1). This component is trivial in a mathematical sense, because
it corresponds to the probability distribution of a random variable that can take only the
value 1 but is of great practical interest because it corresponds to an excess of bursts that
consist of a single opening. However, this component does not always exist even when
GyaGay does have zero eigenvalues, because the area a; attached to it may be zero. This
typically happens when the connectivity between the set of open states, &, and the complete
set of shut states, &, is the same as the direct connectivity between ¢ and %; this will be
true, for example, if there is no direct connection between % and 8, only indirect links via

. Examples and further discussion of this complex point are to be found in Colquhoun and
Hawkes (1987).

13.4.2. Distribution of the Burst Length

A burst starts in an open state (one of the « states) and then may oscillate any number
of times (0, 1, . . . ©) to the short-lived shut states (% states) and back to s{. The probability
(densities) for all possible numbers of oscillations must be added (hence the summation sign
in equation 149 below). Such oscillations are illustrated in Fig. 20 for bursts with three and
two openings. The burst ends at the end of the last opening, before the long-lived shut states
(set €) are reached. This may happen by direct transition from & to € (as in the second
burst in Fig. 20), or it may occur via an intermediate sojourn in % (as in the first burst in
Fig. 20). In the latter case, the final sojourn in @ is invisible to the observer, so its duration
must not be counted as part of the burst length. It is at this point that we see the great power
of working with Laplace transforms. The burst length, ¢, consists of the sum of the lengths
of many individual sojourns in different states; these may be of any length, but they add up
to t. The problem is, therefore, a more complicated version of the convolution problem
described in Section 9. As in Section 9, it can be solved most conveniently by multiplying
the Laplace transforms of the individual distributions. Hence, we obtain a term
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Gia(s)G«(s) to describe an oscillation from s4 to % and back. On the basis of this argument,
we find the Laplace transform, f*(s), of the burst length distribution as

)

J5(s) = by 2 [GHia(5)GHxu() ™ [Ghia(s)Gae + Gilig(s)Iug (149)

r=1

The final term in this describes the end of the burst. The last periods in &4 count as part of
the burst duration (as illustrated in Fig. 20); hence, the terms G#g(s) and G¥(s). The silent
final sojourn in % (see first burst in Fig. 20) is dealt with very elegantly simply by setting
s = 0, so the last term in equation 149 contains Ggg, i.e., G3¢(0), rather than G#(s). This
notation, introduced by Colquhoun and Hawkes (1982), removes the need for the clumsier
deconvolution procedures used by Colquhoun and Hawkes (1981).

The final part of the problem is to invert the Laplace transform in equation 149 to find
the burst length distribution itself. This is a somewhat lengthy procedure (see Colquhoun
and Hawkes, 1982), but the result is very simple. It is

F©) = bp[e® ] o(— Quuer (150)

where the (ky X 1) vector e, = (GuaGae + Gye)ug replaces the usual unit vector; it
describes the paths by which the burst can end. The result in equation 150, although perfectly
general, looks hardly any more complicated than the general open time distribution given
in equation 136. The subscript s{s{ means that the calculation is done using only the upper
ky X ky section of eQ¢¢ (which is a k¢ X kg matrix). The form of this result is intuitively
appealing: it describes a sojourn in the burst states (set €) that starts and ends in an open
state (set ). It can be expressed in scalar form, as a mixture of k¢ exponentials with rates
that are the eigenvalues of —Qxyg, as described in Chapter 20 (Section 7, this volume).

13.4.3. Distribution of the Total Open Time per Burst

In Section 6.4 we discussed the fact that, under certain circumstances, if there is only
one open state, then the total time for which a channel is open within a burst has an exponential
distribution. Having got as far as writing equation 149 for the Laplace transform of the burst
length distribution, it is very easy to obtain various related distributions, such as that for the
total open time per burst. The various possible routes through the burst are described by
equation 149, but now we are not interested in the time spent in the shut states, so we merely
set s = 0 in all the G#(s); i.e., we replace them with Ggy. Inversion of the result gives,
again for any mechanism, a probability density with a form that is very similar to that for
single open times in equation 136. It is given by

J() = bpe¥ i (= Vyuy (151)
where ¢y, is as above. In this result, V4 is a ky X ky matrix of transition rates between
the set of & states that takes into account the possibility of going from one to another via

a sojourn in 98 but not how long it takes to make the sojourn (because any time spent in a
gap does not contribute to the total open time); thus,

Vua = Quu + QuaGay

(152)
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It follows that this distribution is also a sum of ky exponentials whose rate constants are the
eigenvalues of —V 4. In particular, it is a simple exponential distribution if there is only
one open state.

13.5. Some Conclusions from the General Treatment

A number of general conclusions can be drawn for single-channel observations in the
steady state from the analysis of Colquhoun and Hawkes (1982). For example, we can make
the following statements:

1. The analysis of single-channel observations depends on submatrices of Q that corre-
spond to observable sets of states. Insofar as these are smaller than Q itself, the
analysis will be simpler than that of noise and relaxation experiments.

2. The number of exponential components in the distributions of various open lifetimes
and of the total open time per burst should be equal to the number of open states.
In practice, of course, some components may be too small to observe. In mechanisms
with more than one open state, the distribution of open times will not generally be
the same for all of the openings in a burst (and similarly for gaps within a burst).
The distributions of durations of other intervals of interest also have distributions
that are sums of exponentials. The numbers of components in these distributions are
summarized in Table II

3. In general, if a distribution contains more than one exponential component, the time
constants for these components cannot be interpreted simply as the mean lifetimes
of particular species, and the areas under the individual components cannot be
interpreted as the number of sojourns in a particular state. Nevertheless, in particular
cases, such interpretations may be approximately valid.

4. The distribution of the number of openings per burst should consist of a mixture of
a number of geometric distributions; the number of components is determined by
the direct connectivity of the open states, &4, and the short-lived shut states, 9. In some
circumstances there may be an additional component that modifies the probability of
a burst consisting of a single open time.

5. Tt is, for all practical purposes, not possible to analyze mechanisms such as equation
110 without the help of matrix notation. Use of this notation allows a single computer
program to be written that can calculate numerically the single-channel, noise, and
relaxation behavior of any specified mechanism (see Chapter 20, this volume).

Table II. Numbers of Exponential Components in Various

Distributions
Type of interval Number of components
Open times ky
Shut times kg = kg + kg
Burst length ke = ky + kp
Total open time per burst ka
Total shut time per burst ko
Gaps within bursts kep
Gaps between bursts kg + kg




474 David Colquhoun and Alan G. Hawkes

13.6. Distributions following a Jump

Suppose there is a single jump of agonist concentration or voltage applied at time zero.
Certain complications occur in the case where there is zero agonist concentration after the
jump; there will be only a finite number of subsequent openings, and there may be none at
all. We will not consider such cases here.

The basic results already given for open- and shut-time distributions still hold after a
jump; the only thing that is different is the initial vector (denoted ¢ above) that describes
the relative probabilities of starting in each of the open states or shut states. If, for example,
the channel is shut at the moment the jump occurs, ¢ = O, then the distribution of the
subsequent shut time (the first latency, see Section 11) is described by exactly the same
expression as has already been given, but now ¢ must give the relative probabilities that the
channel is in each of the shut states at ¢ = 0. We denote the occupancies at time ¢ as p(f)
and partition this vector into the occupancies of open states pa(f) (a 1 X ky vector) and the
occupancies of shut states ps() (a1 X kg vector), as described in Chapter 20 (this volume).
The relative probability of being in each shut state at £ = 0 is therefore

$(0) = ps(0)/ps(O)us

where the denominator is merely the sum of the terms in the numerator, which is included
to make the elements of $(0) add up to 1. Using &(0) in equation 138 immediately gives
the distribution of first latencies. In order to use this result, we must be able to postulate
appropriate values for ps(0). An example is given in Chapter 20 (this volume, Section 8).
If the channel has come to equilibrium before ¢ = 0, the equilibrium occupancies (under
prejump conditions), calculated as in Chapter 20 (this volume, Section 3) can be used. If
the channel is not at equilibrium at ¢ = 0, e.g., because there was another jump just before
¢t = 0, then the occupancies at ¢ = 0 can be calculated as described in Chapter 20 (this
volume Section 4).

More generally, when we allow for the possibility that the channel may be open at t =
0, we can calculate the first latency as follows. If the channel is open at time zero, the first
latency is defined to be zero. Let f;(f) denote the probability density that the first latency
has duration 7 and that when it ends, the channel enters open state j; let f(r) be the row vector
with elements f;(f). Then

£(t) = pa(0)3(1) + p3(0)e%5'Qsa (153)

where 3(7) is the Dirac delta function. The first term represents the ‘lump’ of probability at
¢t = 0 that results from channels that were open at ¢ = 0. The second term, which is of the
form described above, gives the distributions of first latencies for channels that were shut
at t = 0. The overall density of the first latency, f(¢) say, is obtained by summing over j,
so it can be written as

fu@® = f(Huy (154)
with mean

m = pz(0)(—Qs9) 'ug
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After this first, rather special, shut time, all subsequent open and shut times have the
standard distributions given by equations 136 to 139, provided we supply the appropriate

initial probability vector, ¢. The vector of entry probabilities, for the state in which the first
open time begins, is

o1 = J f()dt = py(0) + p5(0)(—Qz5) "'Qzu = pu(0) + ps(0)Ggy (156)
0

The rth open time following the jump has a probability density given by the standard
result, equation 136, but with initial vector, d,,, given by

bor = Go1(GzGas) ! r=2 (157)

and the mean for the rth open time is

m = bo(—Qus) luy . (158)

Similarly, the rth shut time, for r = 2, has probability density given by equation 138
with the initial vector, ¢, defined as

bsr = bo1(Gu3Gg4) *Gyg =3 (159)

The mean for the rth shut time is

m = &,(—Qgzz) 'ug (160)

The results at the end of Section 11.2 can be obtained from these formulas.

Equation 135 generalizes by use of the total probability theorem and the (strong) Markov
property to

t

Popen(t) = f 3,f(u)P(open at t|in open state j at time u)du
0

ie.,

t

Popen(t) = f f(u)[eQ(l_u)]yl&iusﬁdu (161)
0

where [e®],, stands for that part of the matrix e obtained by choosing only those rows
and columns corresponding to open states. If there is only one open state, this is just the
element Py(¢) discussed in Section 11.3. But when there is more than one open state, we
see that equation 161 does not contain the first latency distribution [i.e., f(f)u, from 154]
as such. We thus see that there is not a simple direct relationship between the macroscopic
current and the first latency distribution; rather, both can be obtained from the vector f(¢).
The macroscopic time course, Popen(t), can be calculated as described in Chapter 20 (this
volume), it will have the form of a sum of k — 1 exponentials with rate constants that are
the eigenvalues of —Q.
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The fact that equation 161 is in the form of a convolution implies that it can be expressed

simply in terms of Laplace transforms as

Ploen(s) = FF()[sT — Qi (162)
where, by taking the Laplace transform of equation 153,
£(s) = pa(0) + p5(0)T — Qs5) ' Qg (163)

13.7. Time Interval Omission and Maximum-Likelihood Fitting

The general nature of the problem that arises was discussed in Section 12. Here we
give a brief outline of the matrix approach for general Markov mechanisms as developed in
Hawkes et al. (1990) and Jalali and Hawkes (1992a,b), assuming a constant dead time £ for
both open and closed intervals. This follows the basic method of Ball and Sansom (1988b)
of defining e-open times and e-shut times, which begin and end at time £ after the start of
the observed open and shut times (see Fig. 21), and we say that an event of type j occurs
at such a point if the channel is in state j at that instant. An alternative approach (Ball et
al, 1991, 1993b) that concentrates on the beginnings of the observed intervals is less
mathematically elegant but more physically natural, more general, and likely to be a more
fruitful approach to future problems; however, in this brief outline it is simpler to use the

first approach.
The key to the pro
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é’qR,-j(t) = P[X(#) = j and no shut time is detected over (O,t)[X(O) =]

where X(7) is the state of the channel at time £, and a detectable shut time is a sojourn in %
of duration greater than £. A similar function R(r) is defined for shut times. Hawkes ef al.
(1990) showed how to compute “R(#) by a method that is quite simple for small ¢ but
becomes more complicated and numerically unstable for large ¢. However, Jalali and Hawkes

(1992a,b) showed that it could be extremely well approximated, for all except quite small
values of 7, by a sum of k exponentials:

kgt

AR(f) = 2 M, eNit (164)
i=1

where the M; are k, X ky matrices, and —\; are some kind of generalized eigenvalues.
They recommend using this for ¢ > 3€ and the exact result for t < 3¢

Now let °G () denote a semi-Markov matrix whose ijth element (i in s and jin %)

gives the probability density of an e-open interval being of length ¢ and the probability that
it ends in shut state j, given that it began in open state ;. It is given by

‘Gug(t) = “R(t — £)Quq exp(Qggf) (165)

because, for the e-open interval to end at time f, there must be a transition from A to F at
time t — & (with no detectable sojourn in & up to then), followed by a sojourn of at least &

in F. °G 44(1) replaces the matrix function Gy4(?) that occurs in the ideal (£ = 0) theory. A
similar function for shut times is

‘Ggu(t) = TR(t — £)Qqy exp(Quxf) (166)

These functions enable us to obtain man

y results of interest in a form that superficially
resembles those found in the ideal case.

13.7.1. Distributions of Observed Open Times and Shut Times

The probability density of observed open times is

f@) = bu*Gus(ug (167)

which may be compared with the ideal form as given in equation 137. The probability density
of observed shut times is given by the similar expression:

J) = b5°Gga(t)uy (168)

In these results ¢4 and g are equilibrium probability vectors for the states occupied at the
start of e-open intervals or e-shut intervals, respectively. Formulas for calculating them are
given by Hawkes et al. (1990).

The importance of result 164 is that, apart from very short times (1 < 3§), the density,
obtained by substituting equation 165 into expression 167, is very well approximated by a
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mixture of kg exponentials with rate constants \;; in other words, it behaves much like the
true distribution of open times, having the same number of components but with modified
time constants (see Section 12.3 for a numerical example). Similar results apply to equation
168, resulting in a distribution approximated by a mixture of kg exponentials.

13.7.2. Joint Distributions of Adjacent Observed Intervals

The above results easily generalize: for example, the joint probability density of an
observed shut time followed by an observed open time is given by

f(ts»to) = (b@KG@.vl(ls) EGM@OO)“? (169)

By further operations on this joint distribution, we can obtain various conditional distributions
and conditional means, examples of which are given in Section 12.4. Details of these
procedures are given in Srodzinski (1994).

By interchanging o« and & in the above formula we get the joint distribution of an
d by an observed shut time. For a reversible process, these two

observed open time followe
d shut times. However, the method

distributions are identical when dealing with true open an
used for defining observed intervals is not symmetrical in time; consequently, we have found
in numerical examples that these two distributions are not actually identical, though they are

so close that the difference would not be detected in practice.

13.7.3. Likelihood of a Complete Record

The formula 169 is easily extended to an entire record. If, for example, we have a
sequence of 2n intervals that starts with a shut time and ends with an open time, and if the
ith pair of adjacent observed shut and open times are denoted by tg;, fo;» then the likelihood
of the entire record is given by multiplying together all the appropriate matrices. Thus, the

likelihood is given by

b5 ‘Gaalts) ‘Ggallor) Ggu(ts) ‘Gugted) G oltsn) ‘Gug(lon)lg (170)

In this expression, dbg is the initial vector for the first shut time; &g*Ggy(ts)) then
or for the first open time, and so on to the end of the record. The

provides the initial vect
sequence of the openings and shuttings, and all the information on correlations contained in

it, is taken into account. The likelihood defined in equation 170 can then be maximized
numerically, as described in Section 12.5, to estimate the model parameters.

14. Concluding Remarks

In the first edition of this book many of the basic ideas described in this chapter were
already known. The major advances since then have been in (1) the understanding of the
importance of information from correlations (Section 10), (2) the development of the theory
for nonstationary processes (Section 11), and (3) the development of usable theories for
treating the problem of missed events (Section 12), with the concomitant ability to do direct
maximum-likelihood fits of a mechanism to observed values simultaneously for several
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