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Padmanabhan K, Urban NN. Disrupting information coding via block
of 4-AP-sensitive potassium channels. J Neurophysiol 112: 1054–1066,
2014. First published June 4, 2014; doi:10.1152/jn.00823.2013.—Recent
interest has emerged on the role of intrinsic biophysical diversity in
neuronal coding. An important question in neurophysiology is under-
standing which voltage-gated ion channels are responsible for this
diversity and how variable expression or activity of one class of ion
channels across neurons of a single type affects they way populations
carry information. In mitral cells in the olfactory bulb of mice, we
found that biophysical diversity was conferred in part by 4-amino-
pyridine (4-AP)-sensitive potassium channels and reduced following
block of those channels. When populations of mitral cells were
stimulated with identical inputs, the diversity exhibited in their output
spike patterns reduced with the addition of 4-AP, decreasing the
stimulus information carried by ensembles of 15 neurons from 437 �
15 to 397 � 19 bits/s. Decreases in information were due to reduction
in the diversity of population spike patterns generated in response to
different features of the stimulus, suggesting that the coding capacity
of a population can be altered by changes in the function of single ion
channel types.
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NEURONS IN PRIMARY SENSORY areas encode stimuli with the
patterns of their action potentials (spikes). Patterns of spiking
are affected by a number of factors including the inputs to the
cell (Rubin and Katz 1999; Meister and Bonhoeffer 2001;
Dhawale et al. 2010), the location of those inputs on the
dendrites (Häusser and Mel 2003; Jia et al. 2010), the mor-
phology of the neuron (Mainen and Sejnowski 1996), and the
voltage-gated channels expressed in each cell (Conner and
Stevens 1971; Balu et al. 2004; Angelo and Margrie 2011).
Neurons exhibit remarkable diversity in each of these features,
and although all are important for neural computation, far less
studied is the connection between intrinsic biophysical diver-
sity and computation. Examples of experimental (Osborne et
al. 2008) and theoretical work (Stocks 2000; Shamir and
Sompolinsky 2006; Chelaru and Dragoi 2008) highlight the
importance of response heterogeneity for neural coding, but
often the focus is largely on heterogeneity at the circuit or
synaptic level, rather than the variability of intrinsic properties.

In the main olfactory bulb (MOB), mitral cells are the
principal relay neurons for conveying odor information from
sensory receptors to areas such as the cortex and amygdala
(Ghosh et al. 2011; Miyamichi et al. 2011; Sosulski et al.
2011). Recently, we have shown that diversity in mitral cell
intrinsic properties allow populations to generate diverse spike
patterns in response to a stimulus, thus improving the infor-
mation ensembles carry about that stimulus (Padmanabhan and

Urban 2010; Tripathy et al. 2013). However, while the ion
channels that are differentially expressed across mitral cells are
being identified (Padmanabhan and Urban 2010; Angelo et al.
2012), the specific contribution of any one channel to the
coding capacity of neuronal populations has not been evalu-
ated.

To explore how diversity of voltage-gated ion channel
across a population of neurons impacts coding, we recorded
from mitral cells from different glomeruli in the MOB of mice,
where an inactivating potassium current sensitive to low con-
centrations of 4-aminopyradine (4-AP) has been reported to
influence neuronal firing (Balu et al 2004) and where diversity
has been shown to be important for neural coding (Padmanab-
han and Urban 2010). As the axons of mitral cells from
different glomeruli converge onto individual piriform cortical
neurons (Miyamichi et al. 2011), we focused on how cell-to-
cell diversity affects neuronal coding from the perspective of
interglomerular diversity. In this framework, diversity across
mitral cells from different glomeruli would be integrated by
individual piriform cortical neurons to encode for odor infor-
mation. We found that the heterogeneity of mitral cell re-
sponses from different glomeruli was reduced by blockade of
potassium channels with 5 �M 4-AP. By effectively equalizing
4-AP-sensitive current densities to zero, the information car-
ried by ensembles of mitral cells was decreased by up to 21%.
By reducing the diversity of a single channel, thereby reducing
this biophysical feature’s heterogeneity across the population,
our results highlight the role that ion-channel diversity plays in
information encoding. Further, this work suggests that variabil-
ity of an individual channel’s activity (at the physiological
level as we have measured in the work, but also possibly at the
molecular and cellular level) across the population may be one
mechanism by which neuronal circuits control their coding
capacity.

MATERIALS AND METHODS

Animal procedures. All procedures were done as previously de-
scribed and in accordance with the guidelines for the care and use of
animals at Carnegie Mellon University, which approved the study.
Briefly, C57Bl/6 mice of either sex between postntal day (P)12 and
P18 were deeply anesthetized with isoflurane and then decapitated.
Brains were placed in ice-cold Ringer’s solution (concentrations in
mM � 125 NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,
1 MgCl2, and 2.5 CaCl2). Three-hundred-micrometer coronal sections
of the bulb (VT1000S; Leica, Nussloch, Germany) were made and
incubated in Ringer’s at 37°C for 30 min before recording.

Electrophysiology. Whole cell patch recordings filled with an
internal buffer concentration (130 mM potassium gluconate, 10 mM
HEPES, 2 mM MgCl2, 2 mM Mg-ATP, 2 mM Na2ATP, 0.3 mM
GTP, 4 mM NaCl, and in some cases 10–50 �M Alexa 488/594
Hydrazide or 1% biocytin) were made using a Multiclamp 700A
amplifier (Molecular Devices, Palo Alto, CA) and an ITC-18 acqui-
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sition board (Instrutech, Port Washington, NY). Mitral cells were
identified under IR-DIC optics based on laminar position in the MOB
and confirmed with fluorescent intracellular fills. One neuron was
recorded per slice, and between one and three neurons were recorded
from each animal. Neurons from different slices belonged to different
glomeruli. All experiments were done at 35°C in Ringer’s solution
with excitatory (25 �M APV and 10 �M CNQX) and inhibitory (10
�M bicuculline) synaptic activity blocked.

A hyperpolarizing pulse was injected before stimuli to measure
input resistance (IR) and assess recording stability. In all experiments,
series resistance was compensated for. As recordings near in vivo
temperatures can degrade the slice, the hyperpolarizing pulse was
delivered before each trial across the entire recording period to ensure
that the cells remained stable and recordings did not degrade over the
duration of the experiment. Recording stability was also assessed by
comparing the spike patterns recorded at the beginning of experiment
(first trial) with those at the end of the experiment (last trial) to the
same stimulus. Furthermore, we measured the stability of the record-
ings throughout our experiments, monitoring the resting membrane
potential that varied 2.6 � 1.7 mV from the beginning of the trial to
the end of the trial in the control condition and varied 1.8 � 1.3 mV
over the duration of the 4-AP recordings. Additionally, we tracked
both the IR and the membrane time constant over the duration of the
recordings. Neurons had an IR of 108 � 44 M� in the control
condition and an IR of 90 � 36 M� following the addition of 4-AP,
with the change in IR being significant in 72% of the neurons (n �
13/18; P � 0.05, ANOVA). The IRs recorded across the population of
mitral cells were consistent with values previously reported (Cang and
Isaacson 2003; Abraham et. al. 2010).

Stimulus. To generate frozen noise stimuli, white noise with a mean
amplitude of 150–200 pA and a standard deviation of 40 pA was
generated for 2.5 s. This stimulus was then convolved with an alpha
function of the form t � (exp�t/�), where � � 3 ms. The resultant
stimulus has previously been shown to be optimal for generating
reliable spike trains across various trials (Bryant and Segundo 1976;
Mainen and Sejnowski 1997; Gálan et al. 2008). This stimulus was
presented to neurons for 2.5 s over multiple trials, with an intertrial
interval of 8 s.

Principal component analysis. The fluctuating noise stimulus de-
scribed above was delivered to neurons in both the control and the
4-AP condition over multiple trials (control � 42.7 � 18.8 trials;
4-AP � 33.1 � 15.9 trials) for 2.5 s The resultant spike trains from
all neurons (n � 23 neurons from 23 slices from 10 animals) in all
conditions (control and 4-AP) were transformed into binary vectors of
1s (corresponding to the occurrence of a spike) and 0 s (absence of a
spike) in 1-ms bins. As all recorded neurons received the same
stimulus for both the control and the 4-AP condition, we aligned all
the spike train vectors to generate a matrix M of size spike trains
(s) � time (T) in size. On this data, we calculated the covariance
matrix (C), (T) � (T) in size. We then performed eigenvalue decom-
position on the covariance matrix C to acquire the eigenvalues and
eigenvectors of the original data. We projected each spike train [a
vector of length (T)] onto the first and second principal component
(PC) by taking the dot product of the spike train and the eigenvector.
From this, each spike train was represented as a point, and the spike
trains from different neurons were represented with the same color.
Because the eigenvectors for both the control and the 4-AP conditions
were determined from a covariance matrix containing each spike train
from all the trials from all cells in both conditions, the basis vectors
corresponding to the first two PCs are the same for the two conditions.
All analysis was performed using MATLAB.

K-nearest neighbor analysis. To determine the degree to which
spike trains across trails from a single cell and across different cells
was more or less similar, we employed a K-nearest neighbor (KNN)
analysis. Spike trains from the control and 4-AP condition were
projected onto the first 30 PCs (PC1–30) as calculated above. From
this, individual trials were separated into test and train conditions (the

number of trials in the training ranging from 30 to 70% of the total
spike trains for the control and the 4-AP condition). A random test
trial was selected and either the 5 nearest neighbors of the 15 nearest
neighbors (calculated by measuring the Euclidian distance between
the test trial and all the training trials) were used to determine the
trial’s identity. If the test trial’s identity determined by the nearest
neighbors was the same as the test trial’s true identity, then this was
termed as a successfully classification. The percent correct was
measured as a fraction of the correct test trials in the two conditions.
The KNN classification was performed on 100 repeats of the data for
each condition (number of trials in testing vs. training, dimensions,
and number of nearest neighbors) to estimate the performance of the
classification algorithm.

Information calculation. Stimulus information, or mutual informa-
tion, was calculated as the difference between the total entropy and the
noise entropy as described previously (Osborne et al. 2008; Padma-
nabhan and Urban 2010).

First, spike trains from individual trials in each cell were binned
and binarized in 8-ms nonoverlapping windows and aligned to the
stimulus. Spike trains from each neuron were thus represented as a
binary spike train vector of 1 and 0 s. Spike train vectors from
different mitral cells were assembled into a model population re-
sponse (as has been done previously, see Padmanabhan and Urban
2010) by randomly selecting spike train vectors for each population in
the cell and turning this into a spike train matrix A whose dimensions
are neurons (n) by time (T). This was repeated over multiple resam-
plings of the data to estimate the ensemble of neurons information
content about the stimulus at any given time (noise entropy, Hnoise)
and over all of the stimuli (total entropy, Htotal).

I � Htotal � Hnoise (1)

To do this, we examined the binary words, or patterns of 1 and 0
s across the each different ensemble of neurons at each time point. For
instance, in a three-cell population, if neurons 1 and 3 fired at time
t � 1 for one trial, then that word would for that trial would be a1[1
0 1]. We generated for different model populations a probability
distribution of the words that occur at each time, and estimate the
noise entropy as the mean of noise entropy at each time t

Hnoise � �
1

T�t�1
T �n�1

N P(an�St)log2P(an�St) (2)

where an � pattern n at stimulus time St. The noise entropy is then
subtracted from the stimulus entropy

Htotal � ��n�1
N P(an)log2P(an) (3)

For comparison of firing rate matched ensembles, only populations
where the mean spike rate of the neurons in the six-cell ensemble was
�20 Hz were included.

RESULTS

Whole cell patch-clamp recordings were made in mitral cells
from slices of mouse olfactory bulb (P12–18). To separate the
role of intrinsic diversity in affecting spiking activity from the
role of synaptic input, including recurrent inhibition (Urban
and Sakmann 2002), all recordings were made in the presence
of synaptic blockers (see MATERIALS AND METHODS). Mitral cells
were held at �59 � 2 mV (n � 12 cells; n � 7 animals)
throughout the recordings, which is similar to the resting
membrane potentials that have been reported in vivo (Cang and
Isaacson 2003). Consistent with previous results, direct current
injections to mitral cells (I � 150–250 pA; n � 3 trials/cell, 2-s
duration) resulted in some neurons firing regularly [coefficient
of variation of the interspike interval (CVisi) � 0.2; Fig. 1B,
top] and others firing in bursts (CVisi 	 0.4; Fig. 1B, bottom)
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(Padmanabhan and Urban 2010). Previous work has shown
that burst-like firing in mitral cells can be altered by blockade
of a 4-AP-sensitive potassium channel (Balu et al. 2004). We
wished to confirm these previous results and determine if this
potassium channel accounted for some of the differences ob-
served in neuronal responses. Following perfusion of 5 �M
4-AP for 10 min, mitral cells were held at �58 � 4 mV (n �
12), which was not significantly different from the voltage cells
were held at in the control condition (P � 0.41, ANOVA).
Extracellular bath application of 5 �M 4-AP (Balu et. al. 2004)
had little effect on some cells, which continued to fire regularly
(Fig. 1C), leaving their CVisis unchanged (Fig. 1D, top; CVisi �
0.11). However, other neurons were affected by 4-AP, no
longer exhibiting “bursty” firing patterns (Fig. 1C, bottom),
and consequently, these cells had a much lower CVisis (Fig.
1D; CVisi � 0.23). In the population of recorded mitral cells
(n � 12), we found a significant change in the CVisis following
the addition of 4-AP (Fig. 1E; Control CVisi � 0.34 � 0.25;
4-AP CVisi � 0.20 � 0.09; P � 0.035, Wilcoxon rank sum
test), suggesting that differential expression of a 4-AP-sensi-
tive potassium channel across the population was one source of
diversity.

4-AP also affected each mitral cell’s firing rate to differ-
ent current injections. In the example cell 1, the firing rates

at lower current injections (�400 pA) were increased
slightly with the addition of 4-AP (Fig. 1F). By contrast,
cell 2 saw a decrease in the firing rate particularly at lower
current injection amplitudes (Fig. 1G) but saturated at
higher current injections in both the control (black traces)
and 4-AP conditions (gray traces, Fig. 1G; 	400 pA). Taken
together, the effect of 4-AP on the current of the neuron to
firing rate relationship (F/I curve) was highly varied, illus-
trating the complex effect that 4-AP-sensitive potassium
channel had on shaping the neural response, particularly
across a population of cells that was diverse for this intrinsic
property.

Blocking a source of biophysical diversity alters coding.
Although DC current input identified one channel that ac-
counted for some of the diversity we saw, the effects on spike
responses (bursting for instance) and the effects on firing rate
made studying neural coding difficult using this relatively
simple stimulus. Additionally, previous work has shown that a
DC current is ill suited for studying how a neuron or population
of neurons encodes a dynamic stimulus (de Ruyter van Steve-
ninck et al. 1997) including how spike trains may convey
information about a stimulus (Strong et al. 1998). Thus, to
examine the role of channel diversity in coding, we injected a
frozen noise current (white noise convolved with a 3-ms alpha
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function; DC bias � 150–250 pA; sigma �4 0 pA; tau � 3 ms;
Fig. 2, A and B), which has been shown to be optimal for
generating spike times that are reliable from trial-to-trial in
mitral cells (Galán et al. 2008). The stimulus generated a
complex pattern of firing in both control conditions (Fig. 2A,

bottom) and following the addition of 4-AP (Fig. 2B, bottom).
Repeated presentation of this stimulus resulted in reproducible
spike patterns in both the control condition (Fig. 2, C–E, black)
and with the addition of 4-AP (Fig. 2, C–E, gray). However,
comparing spike trains from individual neurons in the two
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conditions revealed how responses were altered following
4-AP block. For instance, 4-AP altered the timing of spike
responses to the stimulus (Fig. 2C, bottom box, arrow), whether
or not a cell responded to a specific portion of the stimulus
(Fig. 2D, bottom box, arrow) or the reliability with which
spikes occurred to the stimulus (Fig. 2E, bottom box, arrow).
Collectively, blocking 4-AP-sensitive potassium channels al-
tered the responses patterns of each neuron, thereby changing
how the stimulus was encoded for in the patterns of spiking. As
recordings were made in the presence of synaptic blockers, the
changes observed in the spike responses to 4-AP were not due
to differences in the synaptic input across conditions. Finally,
peristimulus time histograms of the spike responses to the
stimulus showed that instantaneous firing rates were modulated
over a broad range (de Ruyter van Steveninck et al. 1997) in
both the control condition (Fig. 2, F–H, black traces) and with
the addition of 5 �M 4-AP (Fig. 2, F–H, gray traces). Impor-
tantly, this variability of the instantaneous firing rate was
preserved in the presence of 4-AP, confirming that blocking

4-AP-sensitive potassium currents did not compromise coding
trivially, by say simply preventing the neuron from spiking.

Changes in the patterns of spiking reflected by alterations in
instantaneous firing rates suggested that blocking 4-AP-sensi-
tive channels altered how individual neurons represented the
stimulus. However, in the context of olfactory coding, popu-
lations of mitral cells synapse onto piriform cortical neurons, a
pattern of connectivity that motivated how we explored the
effect of information transmission by populations of mitral
cells. To do this, an identical frozen noise current (duration 2.5
s) was injected into each neuron (n � 23 mitral cells; n � 10
animals) over multiple trials (control � 42.7 � 18.8 trials;
4-AP � 33.1 � 15.9 trials) in control conditions and following
blockade of potassium channels by 4-AP. The spike trains for
the 23 cells (where each color corresponded to an individual
neuron) were then represented as spike rasters (Fig. 3A) in both
the control (Fig. 3A, black) and 4-AP (Fig. 3A, red) conditions
for a 2-s window of the stimulus (Fig. 3A, black current trace).
Given the complex patterns of spiking found both across
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neurons and across conditions, we wanted to develop an
alternative way to visualize the similarities and differences of
the spike patterns within trials of a single neuron and across the
different neurons. To do this, we transformed spike trains into
binary vectors of 1 and 0 s and then calculated the covariance
matrix (Fig. 3B) for all the trials from all the cells in both
conditions (control and 4-AP). From this, we determined the
first two PCs (PCs) of the spike train data (Fig. 3C) corre-
sponding to the first two eigenvectors of the covariance matrix
by performing eigenvalue decomposition. In addition, we plot-
ted the cumulative variance explained by ranking the eigen-
values (Fig. 3D). PC1 and PC2 illustrated the complexity of
responses across the population (Fig. 3C) and also revealed
that neuron-to-neuron differences were not due simply to
differences in the firing rates over time (neurons adapting to the
stimulus). Furthermore, as the majority of the variance of the
firing patterns could be explained in far fewer dimensions
(�100) that the original data (2,000 dimensions), projecting

spike trains in the space defined by the PCs allowed us to
visualize the spike train response heterogeneity across the
population of neurons in lower dimensional space while still
capturing the underlying differences of those responses.

Each spike train vector was projected onto a space defined
by the first two PCs and although this low-dimensional repre-
sentation did not account for the full variance of the responses,
it did reveal both the response diversity across trials in a single
mitral cell (Fig. 4, A and B, points) as well as the diversity to
responses across trials from different neurons (Fig. 4, A and B,
colors).

In this space, mitral cell spike patterns recorded in the
control condition were more widely distributed in both PC1
[SD � 32.4 � 0.2 arbitrary units (AU)] and PC2 (SD � 21.3 � 0.3
AU) than following the addition of 4-AP (PC1: SD � 11.4 �
0.3 AU; PC2: SD � 8.6 � 0.1 AU; P � 0.005 PC1 and P �
0.005 PC2, ANOVA; n � 981 control; n � 761 4-AP; 50
resamples, bootstrap with replacement). Consistent with the
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reduction in diversity in response to DC inputs (Fig. 1), the
spike responses to the same frozen noise stimulus in the 4-AP
condition were less variable than those in the control condition.
The mean pair-wise Euclidian distance between the projections
of all spike patterns from a given cell to the spike patterns of
every other cell was significantly larger (P � 0.005, ANOVA)
in the control condition (distance � 47.8 � 28.9 AU) com-
pared with the 4-AP condition (distance �15.8 � 13.2 AU).
Secondly, the response variability across trials within a single
cell was significantly reduced (P � 0.005, ANOVA) following
4-AP block (average distance � 4.3 � 4.4 AU) compared with
controls (10.0 � 11.0 AU). Taken together, 4-AP had multiple
effects on the spike responses across populations of neurons.
On the one hand, spike patterns between cells were more
similar, resulting in fewer distinct representations of the stim-
ulus. On the other hand, spike patterns within cells were more
similar trial-by-trial, resulting in more reliable representations
of the stimulus.

As the diversity described came from different animals (n �
10 animals), we wished to ensure that heterogeneity was a real
property of within animal variability rather than between ani-
mal variability. To do this, we examined the spike trains of
animals where we had recorded three neurons in each mouse
(n � 6 neurons total) and compared the response variability
from cells within the same animal to the response variability
from the same cells across the animals (n � 9 pair-wise
comparisons, n � 6 neurons). This was done by measuring the
mean pair-wise distance of spike train projections onto PCs
from neurons within the same animal (n � 6 pairs) and
between different animals (n � 9 pairs). With greater mean
distance, neuronal responses are more diverse. First, when we
compared the response diversity of pairs of neurons (n � 6
pairs) within the same animal to that of pairs of neurons from
different animals (n � 9 pairs), we found no significant
difference in either the control (Fig. 4C; P � 0.28, ANOVA)
or the 4-AP condition (Fig. 4D; P � 0.9, ANOVA), suggesting
that the diversity we observed in mitral cell responses was not
an artifact of sampling from different mice. When we then
compared the responses of mitral cells from the same animal
before and following the addition of 4-AP (Fig. 4E, n � 6
pair-wise comparisons), we found a significant decrease in the
mean distance of spike train responses within the same animal
(P � 0.02), suggesting that 4-AP was reducing response
heterogeneity within individual animals. Similarly, when we
calculated the mean spike train distances in the same six
neurons across the different animals (Fig. 4F; n � 9 pair-wise
comparisons), we found a significant decrease in the mean
spike train distances (P � 001). This decrease in heterogeneity
is consistent with our findings across all the mitral cells
recorded (n � 23 neurons from 10 animals). Together, our
results suggest that 4-AP block decreases diversity among
mitral cells recorded in a single animal (Fig. 4E) similar to the
decrease in the diversity across all cells from all animals (Fig.
4, B and F). This is also consistent with previous work that
demonstrated diversity within the bulb of individual animals
(Angelo et. al. 2012) and suggests that the effects of 4-AP
reflect decreases in the response variability within populations
of mitral cells in the olfactory bulb of individual mice.

To further quantify the differences in patterns of spike trains
between neurons in the control and the 4-AP condition, we
performed a KNN classification on the spike trains projected

into the space of PCs. Classification was performed on the
spike trains in Fig. 4. We ensured that both control and 4-AP
spike trains were being compared in the space defined by the
same PCs (calculated from all the spike trains from all the
neurons in both the control and 4-AP condition) so as not
introduce any artifacts to the classification. Many parameters
affect the classification accuracy of the KNN algorithm, in-
cluding the dimensionality of the data, the number of nearest
neighbors used to perform the classification, and the number of
examples in the training and test sets. First, we found that the
dimensionality of the data had a significant impact on classi-
fication performance for both the control and 4-AP conditions.
Whereas KNN performed on the spike trains in the first two
PCs (as visualized in Fig. 4) was 0.52 � 0.02 in the control
condition and 0.40 � 0.02 in the 4-AP condition, the classifi-
cation accuracy improved to 0.75 � 0.02 in the control con-
dition and 0.55 � 0.02 in the 4-AP condition as the number of
dimensions was increased to 30 when either 5 neighbors (Fig. 5A) or
15 neighbors (Fig. 5C) were used to classify the testing.
However, in all conditions, we found that classification accu-
racy in the control population was always significantly higher
than classification accuracy in the 4-AP population (P � 0.05,
2 dimensions; P � 0.05, 30 dimensions, ANOVA). We next
wished to determine if the differences in the classification
performance of the KNN algorithm in the control vs. the 4-AP
conditions were simply due to differences in the number of the
spike trains that seeded the training set. Across training sets
that constituted 30, 50, and 70%, respectively, of the total data,
the KNN was significantly better at classifying the spike train
projections in the control condition compared with the 4-AP
condition (Fig. 5B) when either the 5 nearest neighbors or the
15 nearest neighbors were used (P � 0.0005, ANOVA).
Together, these data provided us with a quantitative description
of the spike train differences in the control vs. the 4-AP
condition; spike patterns between cells were made more similar
following the addition of 4-AP, effectively making it more
difficult for the KNN classification algorithm to correctly
assign test spike trains to the correct cell.

As 4-AP block of potassium channels can affect both the
active and passive properties of the neuron (Balu et. al. 2004),
we wished to determine if the changes in the spiking activity
observed could be attributed simply to changes in the passive
properties of neurons, such as their IR. To do this, we first
visualized the spike trains from different trials in both the
control (Fig. 6A, top, and B, top) and 4-AP (Fig. 6A, bottom,
and B, bottom) condition. Two trials from each condition (trial
9 and trial 21), separated by 7 min in recording time, were used
to visualize how spike responses to a frozen noise stimulus
changed both within trials and between trials for neurons with
different passive properties, including cells where the IR
changed significantly following the addition of 4-AP (Fig. 6C;
P � 0.05 ANOVA) and those where such changes were not
observed (Fig. 6D). In the example cell (Fig. 6, A and C),
where a significant change in the IR was observed, the spike
train responses also changed following the addition of 4-AP.
By contrast, in cell 2 (Fig. 6, B and D), neither the IR nor the
spike trains appeared to change following the addition of 4-AP.
To further explore the connections between the spike responses
and neuronal passive properties, we examined how much
changes in the pattern of spiking following 4-AP addition
could be attributed to changes in the IR. To do this, we plotted
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the relationship (Fig. 6E) between the change in the IR [IRD

(M�), calculated as the Euclidian distances of the IR between the
control and the 4-AP condition] for the neuron and the change in
the patterns of spiking [PCD (AU) calculated as the Euclidian
distance between the PC projections of the spike trains before and
after the addition of 4-AP for each cell]. We found no significant
correlation (P � 0.38; n � 18) between the alterations in the IR
of the neurons and the alterations in their spiking patterns (Fig.
6E), suggesting that changes in IR alone could not account for
the changes in the spiking responses of these neurons following
4-AP addition.

The blocking of 4-AP-sensitive channels across populations
of mitral cells had the effect of changing neurons responses in
complex ways. All of these changes in spike responses, the
variability across different cells, the similarity within cells over
different trials, the firing rate of the neurons, and the collec-
tively affect a population’s ability to encode a stimulus. Al-
though these spike train differences visualized across the whole
stimulus (Fig. 3) over long time intervals (2 s) correspond to
the timescales of long-latency inhibition (Urban and Sakmann
2002), they may not adequately reflect coding on other time
scales, like the 10 s of milliseconds corresponding to the timing
of single spikes (Smear et al. 2011), or the 100-ms time scales
corresponding to the sniffing behaviors in mice (Carey and
Wachowiak 2011). To capture coding independent of the
specific stimulus used, and to understand coding on different
time scales, including representing all of the observed changes

in spike patterns following the addition of 4-AP into a single
value, we turned to an information theoretic metric (Osborne et
al. 2008).

Conceptually, we wished to understand how the ensemble
activity of mitral cells (from different glomeruli) related infor-
mation about the stimulus to postsynaptic targets in the piri-
form cortex. The information in mitral cell population re-
sponses was calculated for populations of neurons ranging
from 2 to 15, randomly drawn from the recorded set of mitral
cells (n � 23) as described previously (Padmanabhan and
Urban 2010). To perform this calculation, we presented an
identical stimulus to each of the cells in our population in both
the control and 4-AP condition over multiple trials (Fig. 7A).
Stimuli were presented for 2.5 s each (but for analysis of the
spike train information content, we only included the middle 2
s of the responses to discard transient stimulus onset artifacts).
An example response trial from three example cells (Fig. 7A,
top, black, green, and blue) to the stimulus (Fig. 7A, black
trace) and spike rasters for the same three cells over multiple
stimulus presentations illustrate both the variability of re-
sponses across a single cell and the variability of responses
across different neurons (Fig. 7A, spike rasters). We then
recorded the responses of the same three example neurons to
the same stimulus following the addition of 4-AP (Fig. 7A,
bottom, black, green, and blue) over multiple trials (Fig. 7A,
bottom, spike rasters). To determine the entropy (both the noise
and the total), individual trials for each neuron were drawn at
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random and assembled into stimulus locked population re-
sponses (Fig. 7B). In the example ensemble in the control case,
trial 4 from cell 1, trial 4 from cell 2, and trial 5 from cell 3
were selected on this example draw. Spikes at each time step
(binned into 8-ms windows) were represented as patterns of 1
and 0 s, and the population response, or word, at any given
time was represented as vector of 1 and 0 s. In the case of the
control response at time S1, both cells 2 and 3 fired, but cell 1
did not respond, and so the word for that time was [0 1 1] (Fig.
7B, top). In the same way, words were calculated for the
responses of the same three cells in the presence of 4-AP. In
this example, the population response was generated by draw-
ing trial 4 from cell 1, trial 5 from cell 2, and trial 2 from cell
3. For the same population, to the same stimulus at time S1, the
response was [1 0 1], where both cells 1 and 3 responded, but
cell 2 did not (Fig. 7B, bottom). This process of generating
words at each stimulus time (Sn) was done repeatedly to
estimate the distribution of words that occurred for the ensem-
ble. In addition, the distribution of possible words at all times
was calculated by examining the frequency of all the words
throughout the whole stimulus presentation. The information

these neural ensembles carried about the stimulus was calcu-
lated as the difference between the noise entropy (the former
quantity; Osborne et al. 2008; Padmanabhan and Urban 2010)
and the total entropy (the latter quantity). This calculation was
then repeated from the same neuron populations for the same
stimulus after adding 4-AP to understand how differences in
4-AP-sensitive current altered the information rate in the pop-
ulation. Following the addition of 4-AP, the information rate of
mitral cell populations significantly decreased compared with
control populations of the same size (control: 2-cell population
91.3 � 18.4 bits/s; 15-cell population � 437.5 � 15.0 bits/s;
4-AP: 2-cell population � 72 � 18.2 bits/s; 15-cell population �
397.4 � 19.3 bits/s; Fig. 8A, gray line; P � 0.005 for each
population size tested; n � 300 random combinations of mitral
cells per ensemble size). However, the information carried by
3- to 15-cell populations in the 4-AP case was still significantly
greater (P � 0.005, ANOVA) than the information rate of
purely homogeneous ensembles made by assigning different
trials of the spike trains from a single cell to each of the cells
in the population (Osborne et al. 2008; Padmanabhan and
Urban 2010). This indicates that blocking 4-AP-sensitive po-
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tassium channels only partially reduced the useful intrinsic
diversity found in the population. The gap between the infor-
mation in the presence of 4-AP and a purely homogeneous
population could be due to the remaining sources of heteroge-
neity, including the differential expression of other voltage-
gated ion channels (Angelo and Margrie 2011).

Encoded information depends on a number of factors in the
population spike code, including the diversity in the spike
patterns across the population, the reliability of spiking within
any given cell, and the firing rates of the neurons in the
population. Both noise entropy and total entropy quantify these
different features. We therefore plotted, for each ensemble, the
information carried in the control condition vs. the information
carried by the same population in the 4-AP condition (Fig. 8B;
n � 300 ensembles, for 6-cell populations). The control six-
cell ensembles carried 255.5 � 20.8 bits/s compared with the
4-AP ensembles of the same size that carried 216.6 � 24.9
bits/s, with only 4% of the 4-AP populations carrying more
information than their control counterparts. To determine what
caused decreases in stimulus encoding when diversity was
reduced, we examined the components in the information rate.
In the six-cell populations, the mean total entropy dropped
significantly (P � 0.005, ANOVA) from 600.9 � 48.7 to 557.5 �
48.3 bits/s (Fig. 8C, left) with the addition of 4-AP. By
contrast, the mean noise entropy, was unchanged by addition of
4-AP (345.4 � 37.2 bits/s in control vs. 340.9 � 43.6 bits/s

4-AP; P � 0.17, Fig. 8C, right). The decreases in information
were also not due to differences in firing rates between the two
populations, as similar reductions in information were present
when firing rate-matched control and 4-AP populations were
compared (control � 158.6 � 11.5 bits/s; 4-AP � 123 � 7.2
bits/s; n � 124 ensembles control; n � 148 4-AP ensembles;
P � 0.005, ANOVA). Taken together, these data suggest that
the change in information rate following the addition of 4-AP
was due to a decrease in the diversity of responses the ensem-
ble could generate as evidenced by the reduction in total
entropy.

DISCUSSION

In this work, we demonstrate that the cell-to-cell diversity in
neurons’ spiking can be decreased pharmacologically, thereby
changing each cell’s spiking properties. The effect of this is to
reduce the ability of these populations to carry information
about the stimulus. Specifically, we found that among mitral
cells in the main olfactory bulb, diversity was conferred in part
by a 4-AP-sensitive potassium channel. 4-AP block decreased
the response diversity of mitral cells, both from individual
animals and across all mice studied. By focusing on mitral cells
from different glomeruli, our approach allowed us to investi-
gate how odor information was encoded for by the ensemble
integrating features of the stimulus from different glomeruli.

Fig. 7. Information calculation of spike trains from popula-
tions of neurons in the control and 4-AP condition. A: stim-
ulus (black line at top) and responses from 1 trial of 3 neurons
(middle: black, green, and blue) and the rasters for the 5 trials
from each of the cells (bottom) in the control condition (black)
and following the addition of 4-AP (red). The gray high-
lighted time segment is enlarged in B to show how informa-
tion is calculated. (B) Information is calculated by binning the
spike trains into 8-ms nonoverlapping bins. Spikes (1 s) and
silences (0 s) are assembled across the ensemble of neurons to
generate words ([0 1 1]) at each time step for the control
population and for the same population following the addition
of 4-AP. The process is repeated with different random draws
to generate a probability of any given word occurring in
response to a stimulus.
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Abolishing this source of diversity pharmacologically resulted
in a 21% decrease in information carried by two cell popula-
tions and a 10% decrease in information in populations of 15
mitral cells. Although 4-AP, even in the low concentrations we
used can have nonspecific effects, previous work has demon-
strated that the Kv potassium channel currents constitute the
dominant outward currents in the olfactory bulb (Fadool and
Levitan 1998). As a result, the 4-AP effect we observed is
likely to affect these channels and is consistent with previous
work showing that 4-AP-sensitive potassium currents are crit-
ical for generating spike clusters and may gate the how mitral
cells encode for stimuli in the theta range (Balu et. al 2004).
However, 4-AP-sensitive potassium channels are only one
component of a mixture of other channels that are differentially
expressed by mitral cells, including the hyperpolarization-
evoked sag potential and I(h) current that may act on a slower
time scale (Angelo et al. 2012). Diversity could therefore
further be affected by the combinatorial interactions among

these channels. Different levels of current that passed through
both 4-AP-sensitive potassium channels and I(h) channels
together may make populations more or less diverse, depend-
ing on their respective expression profiles. The impact of
biophysical diversity on neuronal function, in the way we
measure it in this study by studying the effect of the 4-AP
blocker on channel currents, is only one part of a more
complex space of diversity that undoubtedly includes differ-
ences in the expression of channels at the level of transcription
and translation, posttranslational modification, and trafficking
of channels in and out of the membrane. For example, differ-
ential expression and or channel phosphorylation (Fadool and
Levitan 1998) may each contribute to the diversity observed at
the level of the potassium current in mitral cells as has been
reported. By remaining agnostic about these other sources of
diversity, and instead selecting one component of the cell’s
physiological output, its response to complex inputs currents,
we could target currents through channels selective to 4-AP
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and then study how this affects the ways stimulus information
is encoded. We note the decreases in information following
4-AP we observe do not drop to that of purely homogeneous
populations (Padmanabhan and Urban 2010), suggesting that
sources of diversity described above may also contribute to the
heterogeneity of neurons and, therefore, their response vari-
ability.

The diversity across a population of all recorded mitral cells
(from different glomeruli, in different animals) is likely to be
reflective of the diversity within individual animals based on
our results but may also be different from the diversity found
in networks of sister mitral cells that receive input in the same
glomerulus, as recent work implies (Angelo et al. 2012).
However, given that mitral cells associated with many glom-
eruli participate in the representation of a given odor stimulus,
heterogeneities of both sister and nonsister mitral cells are
likely to be important in odor coding to downstream targets
(Miyamichi et al. 2011). Notably, cells in the piriform cortex
are one of the targets of mitral cell axons from different
glomeruli. Our work describes how information may be re-
layed to these piriform neurons as a result of the diversity
across the population of mitral cells from different glomeruli.
As a result, our method of information calculation generalizes
to these cases, showing that even if different glomeruli have
different amounts of diversity, the information rates of the
ensembles should correlate to the diversity of the mitral cells
belonging to those ensembles.

Finally, we considered the case wherein neurons are receiv-
ing perfectly correlated inputs. The optimal diversity for en-
coding stimuli may be different when input correlations are
lower or the neurons fire unreliably. Nonetheless, our work
points not simply to the relationship between diversity and
coding, but also provides a framework to explore how different
amounts of diversity among neurons affect the way stimuli are
encoded.

The role of channel diversity is also likely not restricted to
information coding. Intrinsic heterogeneity has recently been
shown to limit correlation-induced neuronal synchrony (Bur-
ton et al. 2012). Synchronous neuronal oscillations are found
throughout the brain, and mechanisms thought to give rise to
these oscillations include coupled or correlated input (Salinas
and Sejnowski 2002). As biophysical diversity limits the de-
gree of synchronization (Burton et al. 2012), heterogeneity
may also play a role in shaping network dynamics in circuits.

In our work, we address coding broadly by representing the
different effects of channel diversity on spiking activity in a
single value, the population’s information rate. This general
result highlights the net effect of diversity on potential neuro-
nal codes. Different systems may tailor the degree of diversity
across the neural population to specific coding tasks. Notably,
biophysical diversity has been identified in a number of other
systems across many different species including in the com-
munication signals of the electric fish (Marsat et al. 2012), the
auditory brainstem of the chick (Kuba et al. 2005), the spinal
ganglion neurons of the cochlea (Adamson et al 2002), and the
grid cells in the entorhinal cortex in mammals (Giocomo et. al.
2009). In some of these instances such as in the electric fish,
diversity of intrinsic properties allows the system to route
behaviorally relevant information differently, using different
populations of lateral line lobe pyramidal neurons to represent
courtship vs. aggressive behaviors separately (Marsat and

Maler 2010). In other instances, such as the chick brain stem,
the differential expression of Kv1.2 potassium channels in the
nucleus laminaris may allow some cells to serve as coincidence
detectors, thereby affording the animal higher resolution sound
localization. Additionally, the differential expression of HCN
neurons as a gradient in the entorhinal cortex may set the
organization of the receptive fields of the grid cells (Giocomo
et. al. 2011). Each of these examples illustrates how diversity
across populations of neurons may facilitate how sensory
information is represented and processed in the nervous sys-
tem. As a result, intrinsic biophysical diversity could reflect a
general theme, across not only different sensory systems, but
also different species, for optimal stimulus encoding.

In the case of the olfactory bulb, the coverage of a large
coding space of odors may require intrinsic diversity in the
mitral cell population. Alternatively, if stimuli are noisy, or
stimuli need to be encoded with highly correlated firing for
efficient downstream information transmission, diversity may
be reduced. In this respect, intrinsic biophysical heterogeneity
may be as important to neuronal coding as the connectivity of
neurons (Assisi et al. 2011) or their dendritic morphology
(Mainen and Sejnowski 1996; Jia et al. 2011). Diversity could
either be increased or decreased depending on the coding
strategy employed by the network and may, therefore, be
another feature of the neuronal circuit that can be manipulated
by the nervous system to encode stimuli.
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