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In terrestrial vertebrates, the vomeronasal organ (Vno) detects and transduces pheromone 
signals. Vno activation is thought to be mediated by the transient receptor potential C2 (TRPC2) 
channel. The aberrant behavioural phenotypes observed in TRPC2 − / −  mice are generally 
attributed to the lost Vno function. Recently, calcium-activated chloride channels have been 
shown to contribute to Vno activation. Here we show that CACCs can be activated in Vno 
slice preparations from the TRPC2 − / −  mice and this activation is blocked by pharmacological 
agents that inhibit intracellular Ca2 +  release. urine-evoked Cl −  current is sufficient to drive 
spiking changes in Vno neurons from both wild-type (WT) and TRPC2 − / −  mice. moreover, 
blocking Cl −  conductance essentially abolishes Vno activation in WT neurons. These results 
suggest a TRPC2-independent signalling pathway in the Vno and the requirement of calcium-
activated chloride channels currents to mediate pheromone activation. our data further suggest 
that TRPC2 − / −  mice retain partial Vno function. 
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In terrestrial vertebrates, the vomeronasal organ (VNO) detects 
and transduces pheromone stimuli using a set of signalling mol-
ecules distinct from those used in the main olfactory epithelium 

(MOE). The mammalian VNO expresses three distinct families of 
G-protein-coupled receptors, V1Rs, V2Rs and FPRs1–7. On binding 
to their ligands, these receptors initiate signalling cascades that acti-
vate phospholipase C to elevate the levels of inositol 1,4,5-trisphos-
phate (IP3), diacylglycerol and their metabolites8–14. These events are 
thought to lead to the activation of the non-selective cation chan-
nel TRPC2, a member of the TRP superfamily of non-selective ion 
channels15–17. TRPC2 is highly expressed in the VNO neurons and 
is enriched in the sensory microvilli of the dendrites15–18. Genetic 
removal of the TRPC2 channel from the mouse genome results in a 
significant loss of pheromone-triggered responses in VNO neurons 
and aberrant innate behaviours19–21. However, pheromone-triggered 
responses are still detected from the VNO of TRPC2 − / −  mice20,22,23. 
Studies have suggested TRPC2-independent signalling in the VNO, 
but the ionic mechanism is unclear22,23.

In a recent study, calcium-activated chloride channel (CACCs) 
were found to be activated by urine in the mouse VNO24. Although 
it is assumed that CACC currents act downstream of TRPC2 to 
amplify its activation, there is no experimental evidence to dis-
tinguish whether the two signalling pathways act sequentially or 
independently. In this study, we find that the Cl −  conductance con-
tributes a significant portion to the urine-evoked current in VNO 
slice preparation. We show that activation of this conductance is 
triggered by both Ca2 +  entry through the TRPC2 channel and Ca2 +  
release from intracellular stores. In the absence of TRPC2, the acti-
vation of the Cl −  conductance is sufficient to trigger spiking activity 
in the VNO neurons. On the other hand, blocking Cl −  conduct-
ance greatly reduces VNO activation in both wild-type (WT) and 
TRPC2 − / −  neurons. Our results suggest a TRPC2-independent 
signalling pathway in the VNO neurons and the requirement of 
CACC currents to mediate pheromone activation.

Results
Urine-evoked responses in slice preparations of VNO. The sensory 
neurons in the VNO form a pseudostratified sheet in which the 
dendrites of the neurons are exposed to the apical lumen and the 
cell bodies are insulated by the sustentacular cells25. Only a handful 
of studies have investigated pheromone-induced responses in VNO 
neurons in this native configuration9,26–28. We therefore performed 
patch clamp experiments in slice preparations of the VNO to assess the 
contributions of different signalling mechanisms to VNO responses.

We used mouse urine as the pheromone source to activate VNO 
neurons. Previous studies showed that urine only activated a frac-
tion of the neurons and elicited a range of responses28–30. This is likely 
because of the fact that each VNO neuron expresses a single type of 
vomeronasal receptor1–7 and the responses are highly specific26. To 
accurately assess the responses, we analysed all the cells recorded 
in VNO slices and plotted the current amplitude histogram (Fig. 
1a–c). It was apparent that under control conditions, the respond-
ing cells showed amplitudes that were significantly larger than 2× 
random noise of the filtered records (0.2 pA). We thus only analysed 
responses with amplitude larger than 0.4 pA. Approximately 40%  
of the cells showed reliable responses to repeated urine stimula-
tion (12 out of 29 cells, 41.4%). The percentage of responsive cells 
was consistent with previous findings using Ca2 +  imaging to study 
urine-evoked responses in the same preparation29,30.

Urine activates a Cl −  conductance. We specifically examined the 
contribution of the CACCs to urine-induced currents (Fig. 1a,b). 
We performed whole-cell recordings using intracellular solutions 
with Cl −  substituted by the non-permeable anion methanesulfonate 
(MSF − ). Under this condition, we set the reversal potential for Cl −  
to  − 60 mV so that there was no net flow of Cl −  across the membrane. 

Substitution of intracellular Cl −  with MSF −  resulted in a reduc-
tion of ~70% of urine-induced inward current (from 3.65 ± 0.50 
to 1.12 ± 0.45 pA; Fig. 1a). Conversely, substitution of extracellular 
Cl −  with non-permeable gluconate without altering intracellu-
lar Cl −  led to an increase in the amplitude of the inward current 
(from 3.65 ± 0.50 to 6.25 ± 0.59 pA; Fig. 1a). Furthermore, treatment  
of niflumic acid, a Cl− channel blocker, reduced urine-evoked  
currents by ~70% (from 6.77 ± 0.89 to 2.13 ± 0.46 pA; Fig. 1b),  
similar to the effect of replacing intracellular Cl − . These find-
ings demonstrated the presence of a Cl −  current in urine-evoked 
response in VNO neurons.
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Figure 1 | Contribution of Cl −  conductance to urine-evoked current in 
the VNO. (a) urine-evoked whole-cell currents recorded in WT mice 
with CsCl (left and black bar; n = 12), CsmsF (middle and blue bar; n = 5) 
internal solutions or gluconate-substituted external solution (right and 
red bar; n = 12). Top, sample traces of the recordings. Black lines above 
the traces indicate the duration of urine application. middle, average 
response amplitude of inward currents. Bottom, illustration of intracellular 
and extracellular Cl −  concentrations. (b) sample traces and bar graph 
showing the effects of niflumic acid on urine-evoked currents. Response 
currents are recorded under control, niflumic acid (nA) treatment and 
after washout (uwashout). Traces shown are from the same cell. seven cells 
were recorded, with one cell lost during washout. (c) Response amplitude 
histogram for the currents shown in a, with 0.5 pA bin size. Black, blue and 
red bars indicate the recording conditions illustrated in a. (d) Response 
amplitudes at intracellular Ca2 +  concentrations of 190 nm (n = 6) and 
5 nm (n = 7). (e) Increase in spiking rates as a function of depolarizing 
current injection. Top, sample traces of spike patterns in 0, 2, 5 and 15 pA 
injection. Bar above the traces indicates duration of current injection. Error 
bars indicate standard errors. Bottom, summary of the current injection 
experiment (n = 6). *P < 0.05 and **P < 0.01 (pairwise t-test). All pairs 
marked with * have post hoc analysis of variance test, P < 0.01. ext, external; 
int, internal.
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Sensitivity to small currents in VNO neurons. In agreement with 
a previous study27, the currents recorded from the vomeronasal 
neurons in slices were within picoampere range. To test whether 
the small currents were caused by rapid run-down as a result of 
low Ca2 +  concentration in the pipette, we used intracellular solu-
tions containing either 5 mM EGTA/2 mM Ca2 +  or 1 mM EGTA/
0 mM Ca2 + . The Ca2 +  concentrations in the pipette solutions were  
estimated to be 190 and 5.55 nM, respectively31. We found little  
difference in the responses under these two conditions (Fig. 1d).

Overall, urine application induced inward currents of 2–12 pA 
when the cells were voltage clamped at  − 60 mV (Fig. 1c). These 
currents were significantly smaller than those reported for olfac-
tory neurons, in which odour-evoked currents were 10–100 times 
larger32,33. We reasoned that the small current was characteristic 
of the VNO neurons based on the fact that field potential record-
ings of urine-evoked responses in VNO epithelia (~100–200 µV) 
were about 100 times smaller than those of odour-evoked potential 
from the olfactory epithelia (10–20 mV) under similar recording 
conditions29,32. To further test whether this small current was physi-
ologically relevant, we examined the relationship between input 
current and the spiking activities of the VNO neurons. Under cur-
rent clamp condition, current injection as low as 1 pA was able to 
change spiking frequency of the VNO neurons (Fig. 1e). The change 
in spiking rate was most sensitive in the range of 1–5 pA injection 
and reached a plateau at 15 pA (Fig. 1e). The sensitivity to small 
current was consistent with that observed in dissociated cells34 and 
was likely the result of the large input resistance (1–3 GΩ) of the 
VNO neurons9,34.

Urine-activated Cl −  current requires Ca2 + . We next tested whether 
extracellular and intracellular Ca2 +  concentration changes affected 
urine-induced responses. In these experiments, we substituted 
Na +  with Li +  in both bath and intracellular solutions to prevent 
possible membrane currents operated by the Na + /Ca2 +  exchanger 
in response to changes of intracellular Ca2 +  level35,36. When extra-
cellular Ca2 +  concentration was reduced from 2 mM to 1 and 0 mM, 
we observed corresponding decreases in urine-evoked currents 
(from 4.12 ± 0.56 pA to 2.71 ± 0.32  and 1.65 ± 0.31 pA, respectively; 
Fig. 2a,b). This experiment suggested that Ca2 +  was required for 
urine-evoked currents.

We next examined the requirement of intracellular Ca2 +  in acti-
vating the CACC currents. We manipulated intracellular Ca2 +  con-
centrations using two Ca2 +  chelating agents, EGTA and BAPTA, 
in the intracellular solutions. BAPTA had been shown to have a 
faster dynamics in chelating Ca2 +  than EGTA and was expected to 
be more effective in suppressing the increase in intracellular Ca2 +   
(ref. 37). We thus used intracellular solutions containing 1 mM 
EGTA/0 mM Ca2 +  and 5 mM BAPTA/0 mM Ca2 + , with the esti-
mated Ca2 +  concentrations to be 5.55 and 0.87 nM, respectively31.

In cells recorded with 1 mM EGTA, substitution of external Cl −  
ions with non-permeable anions increased urine-evoked currents 
by 71% (from 3.65 ± 0.46 to 6.25 ± 0.59 pA; Fig. 2c,d). In contrast, 
currents recorded using intracellular solution with 5 mM BAPTA 
were less sensitive to external Cl −  substitution, increased by 31% 
(from 4.25 ± 0.90 to 5.6 ± 1.30 pA; Fig. 2c,d). The basal current 
recorded with 5 mM BAPTA in pipette solution was slightly higher 
than those recorded with 1 mM EGTA internal solution (4.25 ± 0.90 
versus 3.65 ± 0.50 pA; Fig. 2c,d). This effect might have resulted 
from reduced activation of calcium-activated potassium channels 
in the VNO neurons recorded with high intracellular BAPTA38,39. 
Nevertheless, maintaining low intracellular Ca2 +  levels significantly 
reduced the Cl −  component of urine-activated response.

Activation of Cl −  current in TRPC2 − / −  VNO neurons. We then 
tested whether CACCs could be activated in the absence of TRPC2 
channel. We recorded urine-evoked currents in VNO neurons from 

TRPC2 − / −  mice20 and found that the currents were reduced by 
~50% when compared with those from WT mice (1.88 ± 0.34 ver-
sus 3.65 ± 0.50 pA; compare Figs 1a with 3a). We further analysed 
the contribution of Cl −  current in TRPC2 − / −  neurons. Strikingly, 
we observed that the urine-evoked inward currents were reduced 
to near zero ( − 0.05 ± 0.69 pA) when intracellular Cl −  was substi-
tuted with MSF − . This finding suggested that the inward current 
was carried entirely by the Cl −  conductance in TRPC2 − / −  neu-
rons (Fig. 3a). Conversely, reducing extracellular Cl −  to 6 mM 
increased urine response significantly (5.66 ± 1.02 pA; Fig. 3a). 
We parsed out the contribution of Cl −  versus non-Cl −  current to 
urine-evoked response in WT and TRPC2 − / −  VNO (Fig. 3b). In 
WT mice, altering external Cl −  concentration only affected the Cl −  
current but not the non-Cl −  components. In TRPC2 − / −  back-
ground, the non-Cl −  current was eliminated, but the Cl −  currents 
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Figure 2 | Urine-activated Cl −  current requires Ca2 + . sample traces 
(a) and average amplitude (b) of whole-cell currents in response to 
urine activation recorded under the three different extracellular Ca2 +  
concentrations ([Ca2 + ]ext). sample traces (c) and average amplitude (d) 
of whole-cell currents recorded using 1mm EGTA (n = 12) or 5 mm BAPTA 
(n = 6) in pipette solution at different extracellular Cl −  concentrations 
([Cl]ext). The same cells were recorded before and after external Cl −  
substitution with gluconate. The difference in current amplitude indicated 
in c is attributed to Cl −  channels. Black lines above the traces indicate  
the duration of urine application. Error bars indicate standard errors. 
**P < 0.01; ns, not significant.
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was only marginally reduced (2.43pA, WT; 1.93 pA, TRPC2 − / − ). 
Thus, ~80% of the urine-evoked inward current carried by Cl −  was 
retained in TRPC2 − / −  mutants. This finding suggested mainly a 
TRPC2-independent mechanism for CACC activation.

Intracellular Ca2 +  release activates CACC. What was the Ca2 +  
source to activate CACC in TRPC2 − / −  neurons? As TRPC2 
was the only TRP family of ion channels identified in the VNO 
 neurons1,15,40, we tested the possibility that Ca2 +  release from intra-
cellular stores might trigger CACC activation. As the IP3 pathway 
had been implicated in VNO signalling9, we applied ruthenium red 
to block IP3-triggered intracellular Ca2 +  release in VNO neurons 
and examined the urine-induced current. We found that by block-
ing intracellular Ca2 +  release, urine-induced currents were reduced 
by 35.3 ± 11.7% in WT VNO (Fig. 4a,d). We then used thapsi-
gargin to deplete intracellular Ca2 +  stores and found that urine-
induced currents were reduced by 51.5 ± 8.8% (Fig. 4a,d). When 
we replaced intracellular Cl −  with MSF − , the effects of ruthenium 
red or thapsigargin were eliminated (Fig. 4c,d). This observation 
suggested that the currents sensitive to these pharmacological rea-
gents were mediated by Cl − . Moreover, urine-evoked responses in 
TRPC2 − / −  cells were completely blocked by ruthenium red or 
thapsigargin (Fig. 4b,d). Therefore, we concluded that IP3-medi-
ated Ca2 +  release from intracellular stores were able to mediate the 
activation of the Cl −  currents in WT and TRPC2 − / −  VNOs. In 
TRPC2 − / −  mice, the CACC current was activated through this 
pathway only.

Requirement of CACC for VNO activation. Is the Cl −  current suffi-
cient to drive the spiking activity of the VNO neurons? We recorded 
spiking activities of VNO neurons from WT and TRPC2 − / −  ani-
mals. To exclude the possibility that TRPC2 knockout might sig-
nificantly alter the excitability of the neurons, we first examined the 
resting potential in WT and TRPC2 − / −  VNO neurons. We found 
that the resting potentials were indistinguishable among these neu-
rons (WT:  − 51.07 ± 0.64 mV, n = 13; TRPC2 − / − :  − 50.58 ± 1.38 mV, 
n = 12). We next performed extracellular recordings in order not to 

perturb the intracellular Cl −  concentration. Application of urine 
elicited increases in spiking rates in WT and TRPC2 − / −  neurons 
alike, although the level of excitation in TRPC2 − / −  neurons was less 
than that in the WT neurons (Fig. 5a–e, and Fig. 5f). Treatment of 
the slices with niflumic acid or another Cl −  channel-specific inhibi-
tor, disodium 4-acetamido-4′-isothiocyanato-stilbene-2,2′-disul-
phonate (SITS), not only reduced the level of spontaneous activity 
of the VNO neurons but also blocked urine-induced increases in 
spiking rate (Fig. 5a–e, and Fig. 5f). The effects of niflumic acid and 
SITS could be reversed on washout (Fig. 5a–e, and Fig. 5f). Interest-
ingly, we observed that when the Cl −  channels were blocked, activa-
tion of the TRPC2 channels alone was not sufficient to excite the 
cells (Fig. 5a,b,d). This finding suggested that activation of CACC 
was required for VNO activation.

Discussion
In this study, we have investigated the role of CACCs in urine-
evoked VNO activation and found that Cl −  contributes to a sig-
nificant portion of urine-evoked responses and is sufficient to drive 
spiking changes in WT and TRPC2 − / −  VNO neurons. We also 
demonstrated that CACC currents were able to mediate pheromone 
activation independently of TRPC2.

In mice, olfactory cues are recognized by both the MOE and the 
VNO. The two sensory organs seem to have evolved independently 
using different sets of chemosensory receptors1–3,5–7 and distinct sig-
nal transduction machineries13–15,19–20,43–45. Our study of the contri-
bution of Cl −  currents in VNO signalling further distinguished the 
two systems. The activation of the CACCs in the MOE is secondary 
to the cyclic-nucleotide-gated (CNG) channel. Ca2 +  entry through 
the CNG channel is required for the activation of the Cl −  conduct-
ance46,47. Genetically, knockout of the CNG channel essentially 
abolishes odour-evoked current and renders the mice anosmic48. 
Our data show that the activation of the Cl −  conductance in the 
VNO seems independent of the activation of the TRPC2 channel. 
In WT mice, ~70% of the urine-evoked current is carried by Cl −  
under normal physiological conditions. TRPC2 carries ~30% of the 
inward current, but Ca2 +  entry through TRPC2 is likely to further 
activate the CACC currents. Currents recorded from TRPC2 − / −  
VNO are reduced by ~50%, more than the currents carried by 
TRPC2. These observations indicate that Ca2 +  mobilization from 
intracellular stores and Ca2 +  entry through the TRPC2 channel act 
synergistically to activate the Cl −  conductance. Nevertheless, with-
out TRPC2, the CACC currents are able to excite the VNO neurons. 
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When the Cl −  channels are blocked, TRPC2 is insufficient to excite 
the cells. Thus, the CACCs seem to be necessary and sufficient to 
activate the VNO neurons. Our studies suggest a different view of 
CACC function in VNO activation from that of Yang and Delay24, 
who conclude that Cl −  currents amplify inward currents mediated 
by other channels, as in the MOE.

TRPC2 − / −  mice show striking phenotypes in sexual and 
aggressive behaviours19–21. The behavioural observations have also 
led to the notion that TRPC2 channel is the main contributor to 
VNO signalling. Our results show that the VNO neurons can be 
activated in TRPC2 − / −  mutants. These findings are consistent 

with electrophysiology studies from several other groups11,22,49 
and experiments showing remaining pheromone-elicited behav-
iours in TRPC2 − / −  mice23. Thus, the behavioural phenotypes 
observed in TRPC2 − / −  may not reflect the complete loss of 
VNO function. We note that, in TRPC2 − / −  mice, more than 
50% of the basal layer of VNO neurons, which express the V2R 
family of vomeronasal receptors and the Go protein, are lost19 (our 
unpublished observations). Thus, an alternative explanation of 
the behavioural phenotype in the TRPC2 − / −  mice is the combi-
nation of reduced VNO activation and selective loss of the basal 
layer of neurons.
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Methods
Animals. Urine-evoked responses were obtained from 2- to 6-month-old male 
and female mice of C57BL/6J and TRPC2 − / − 20. The TRPC2 strain was back-
crossed to C57/BL6J for at least three generations. Approximately equal numbers 
of male and female mice were used in the recordings. Urine was collected and 
stored at  − 20 °C as described previously29,30. For each experiment, urine samples 
were pooled from at least three male and three female mice. Animals were 
maintained in the Lab Animal Service Facility of Stowers Institute at 12:12 light 
cycle and provided with food and water ad libitum. Experimental protocols 
were approved by the Institutional Animal Care and Use Committee at Stowers 
Institute and in compliance with the National Institutes of Health (NIH) Guide 
for Care and Use of Animals.

Electrophysiology. Mice were killed by rapid cervical dislocation following CO2 
asphyxiation. Dissection of VNO tissue was performed in chilled mouse artificial 
cerebrospinal fluid (mACSF) aerated with 95% O2/5% CO2. VNO was embedded 
in a gel composed of 4% low-melting-point agarose prepared in mACSF. Once the 
gel solidified, the tissue block was mounted on a specimen holder and secured onto 
the VF-300 microtome sectioning system (Precisionary Instruments). The VNO 
tissue was sectioned into 200 µm slices, which were then transferred to mACSF 
solution continuously aerated with 95% O2/5% CO2 at room temperature.  
The composition of mACSF was (in mM): NaCl 125, KCl 2.5, CaCl2 2, MgCl2 1, 
NaHCO3 25, Na2HPO4 1.25 AND glucose (dextrose) 10. For external Cl −   
substitution experiments, NaCl was substituted with sodium gluconate.

Patch clamp recording pipettes with resistance of 4–8 MΩ were fabricated 
using P-2000 micropipette puller (Sutter Instrument). A VNO slice was placed 
in a recording chamber continuously superfused with oxygenated mACSF. All 
recordings were performed using the Olympus BX50WI microscope equipped with 
a Rolera-XR camera (QImaging). A ×40 objective lens (NA 0.8) was used to guide 
patch pipette to individual neurons. Whole-cell recording was conducted using 
Multiclamp 700A amplifier (Molecular Devices), with 10 kHz sampling rate and 
low-pass filtered at 100 Hz for voltage clamp experiments and 1 kHz for current 
clamp recordings. The plotted current traces were low-pass filtered again at 20 Hz.

For voltage clamp experiments, membrane potential was held at  − 60 mV, 
unless otherwise indicated. Current injection experiments were conducted under 
current clamp mode in whole-cell configuration. Current was clamped at I = 0 at 
rest to maintain the original resting potential for the cell. Membrane potential was 
examined before and after current injection. The cells maintained resting potentials 
following the current injection. The following current injection protocols were 
applied. Five sweeps were made with 1 pA increment from 0 to 4 pA, followed by 
five sweeps with 3 pA increment from 5 to 17 pA and five sweeps with 5 pA  
increment from 15 to 35 pA. Changes in spike frequency were calculated by  
subtracting the spontaneous spike rate from those during current injection.

Unless otherwise indicated, the pipette was filled with intracellular solution 
containing (in mM): CsCl 130, MgCl2 2, CsOH 10, EGTA 1, HEPES 10, ATP 5 
and GTP 0.3 in pH 7.2. Free Ca2 +  concentration in the recording solutions was esti-
mated to be 5.55 nM (1 mM EGTA) according to McGuigan et al.31 For internal Cl −  
substitution experiments, CsCl was substituted with caesium methanesulfonate.

Urine from mature male and female mice was mixed at 1:1 ratio and diluted to 
1:100 in mACSF for stimulation of the VNO slices. Urine was delivered for 15 sec 
using a pressurized perfusion system (ALA-VM8, ALA Scientific Instruments).  
The tip of the perfusion head is placed ~500 µm away from the slice. The time 
delay of the stimulus was measured using a solution containing fluorescein. It took 
~300 ms from the start of the delivery for the dye signal to reach plateau value.  
The 15-sec delivery time mimicked the duration of a typical urogenital investiga-
tion episode for the mouse. For inhibitor experiments, VNO slice was incubated 
in mACSF containing 600 µM niflumic acid or 100 µM SITS for 2 min before 
stimulation.

For extracellular recordings, pipettes with tip size around 1 µm and 1–3 MΩ 
resistance were fabricated and filled with mACSF. Recordings were performed in 
a loose patch configuration. A loose seal (80–100 MΩ resistance) was formed by 
applying gentle suction when the electrode tip was in contact with a cell. Signals 
were band filtered between 300 Hz and 3 kHz. 
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