
Simultaneous recording from most neurons in a neural circuit has
not been accomplished anywhere in the vertebrate brain. The retina
is promising for such a systematic study, because its modular organi-
zation implies that recording from a small patch of ganglion cells
should sample its full functional diversity1. Although multi-elec-
trode array technology was developed almost 10 years ago2, so far we
can record only from small fractions of ganglion cells over the array:
about 15% of cells in salamander2,3 and in rabbit4. The limitation is
not in recording signals from many ganglion cells, but rather in sort-
ing the signals into spike trains from individual neurons. Despite
considerable interest in algorithms designed to improve spike sort-
ing, no general solution has emerged5–7. What makes this problem
difficult is that several spikes overlap each other in time and thereby
produce ambiguous signals.

Here we report the development of a new method of multi-
electrode recording and spike sorting that uses a dense array and
combines signals from up to 30 electrodes to sort spikes; this method
can be thought of as a generalization of tetrode recording8. We first
find the average voltage pattern on the array when a ganglion cell fires
a spike and then use an iterative algorithm to match multiple spike
patterns to the raw data. Because every ganglion cell occupies a
unique position in space, and because extracellular signals decay rap-
idly with distance, each ganglion cell produces a unique pattern of
activity on the dense array. This unique pattern can be used to iden-
tify the source of overlapping spikes, which might appear ambiguous
if we were to use only a single electrode.

By retrograde labeling of the ganglion cells, we can compare the num-
ber of cells over the array to the number of isolated, single-unit spike
trains. This comparison shows that all or nearly all of the retinal gan-
glion cells in a patch of the retina are recorded. This technical advance
promises to yield insights into how populations of ganglion cells encode
visual stimuli and how the retinal circuitry processes its visual inputs.

RESULTS
Determination of array spacing
Electrical activity was recorded by placing the ganglion cell layer
against a planar multi-electrode array of either hexagonal (Fig. 1a) or
rectangular geometry (Fig. 1b) in which the electrodes were spaced 
30 µm apart. We studied the retina of the salamander, a species that is
especially well suited for recording from all of the ganglion cells. In
cross-section, the ganglion cells could be seen to form a monolayer
with only a thin membrane covering them (Fig. 1c).

The cell density, as determined both by retrograde labeling and by
electron microscopy of the optic nerve (Methods), was moderate
(∼ 1,400 cells/mm2) and roughly uniform across the retina. At this den-
sity, the average spacing between ganglion cells was about 27 µm,
which meant that the array should have an electrode near to every gan-
glion cell. We measured the amplitude of the voltage deflection when
ganglion cells fired an action potential and found that this amplitude
could be fit by an exponential function of the distance from the pri-
mary electrode (Fig. 1d and Methods). The space constant was 28 ±
1 µm, similar to the 30-µm spacing between electrodes.

Identification of templates
The first step in spike sorting is to find the typical voltage waveform
observed on the array when each ganglion cell fires a spike, a pattern
that is called the ‘spike template’. We found the times when each gan-
glion cell fired its spike in isolation from the spikes and slow poten-
tials fired from other neurons. The template was an average over all
these ‘clean’ spike waveforms. Although it was easy to identify isolated
spikes, they usually comprised a small subset of all of the spikes pro-
duced by a ganglion cell, and thus their identification was not by itself
sufficient for spike sorting.

Specifically, we started by finding all the times in the raw data
that contained a possible spike, which we defined as a voltage

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA. Correspondence should be addressed to M.J.B. (berry@princeton.edu).

Published online 27 September 2004; doi: 10.1038/nn1323

Recording spikes from a large fraction of the
ganglion cells in a retinal patch
Ronen Segev, Joe Goodhouse, Jason Puchalla & Michael J Berry II

To understand a neural circuit completely requires simultaneous recording from most of the neurons in that circuit. Here we
report recording and spike sorting techniques that enable us to record from all or nearly all of the ganglion cells in a patch of the
retina. With a dense multi-electrode array, each ganglion cell produces a unique pattern of activity on many electrodes when it
fires an action potential. Signals from all of the electrodes are combined with an iterative spike sorting algorithm to resolve
ambiguities arising from overlapping spike waveforms. We verify that we are recording from a large fraction of ganglion cells over
the array by labeling the ganglion cells with a retrogradely transported dye and by comparing the number of labeled and recorded
cells. Using these methods, we show that about 60 receptive fields of ganglion cells cover each point in visual space in the
salamander, consistent with anatomical findings.
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deflection exceeding 60 µV. This threshold was roughly four times
the standard deviation (s.d.) of the voltage on an electrode. We only
considered threshold crossings at least 0.4-ms apart to minimize
multiple detection of the same spike. For each threshold crossing,
we visualized the peak voltage on multiple electrodes by using a
version of the open code program Mclust (created by A. Redishi,
http://www.cbc.umn.edu/∼ redish/mclust) that was modified to
handle an arbitrary number of electrodes. Clusters were selected
manually by using standard constraints, similar to the union and
intersection of regions on a plot of peak voltage on one channel
versus peak voltage on another channel. The software allowed con-
straints to be applied across several channels (Fig. 2a,b) and
selected a set of voltage waveforms of either 3.2-ms or 6.4-ms dura-
tion on all electrodes of the array (Fig. 2c).

This set of waveforms included overlapping spikes from other
cells. We selected clean spike waveforms (Fig. 2d) by automated
removal of waveforms that differed from the average by more than 2
s.d. and by manual removal of remaining outliers. The average wave-
form did not change much during the isolation of clean spikes, indi-
cating that the average was relatively insensitive to outliers (a typical
example is shown in Fig. 2). Occasionally, the spike waveform
changed enough during a burst of spikes that two different clusters of
peak voltages were formed. These situations were easy to identify,
and the spike trains resulting from the two templates were subse-
quently combined (see below). Some templates had an amplitude
just above the threshold and signal only on the array boundary.
These ‘spikelets’ presumably originated from neurons off the array
and could not be cleanly isolated.

Matching templates to the raw data

Spikes were detected by fitting threshold crossing events in the raw
data with a linear combination of templates. Each template was
allowed to have a shift between ±1.4 ms in 0.1-ms steps; we also
included a blank template as an option so that small threshold cross-
ing events would not need to be identified as a real spike. All of these
template shifts (16 templates with 465 total shifts; Fig. 3) were
matched against the raw data by using mean squared error as a meas-
ure of goodness of fit. Typically, the three or four smallest values of
mean squared error resulted from the same template with successive
time shifts, indicating that matches had a temporal precision of
about 0.1 ms (Fig. 3a).

Because each threshold crossing event might contain more than
one spike, we subtracted the best-fitting shifted template from the raw
data and repeated the procedure on the residual (Fig. 3c). In the
example shown, the best match on the fourth iteration was the blank
template, and the raw voltage waveform was very closely fit by three
templates (Fig. 3d). We tested the adequacy of our iterative approach
to template matching by exhaustively calculating all possible combi-
nations of up to four templates. In every case, the best match involved
the same templates that were chosen by the iterative method. For
Figure 3c, the 15 best fits from the exhaustive search involved the
same three templates with slightly different temporal shifts.

To guard against using too many templates, we stopped the iterative
matching process at a number of templates, N, that minimized the
following heuristic error function (Fig. 3b):

N
E(N) =  S – ΣTi  +   N

    i  = 1

λ
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Figure 1  The dense array. (a) A planar multi-electrode array with 19
electrodes in a hexagonal geometry. (b) A rectangular array with 30
electrodes. The spacing between adjacent electrodes is 30 µm and the
electrode diameter is 10 µm. (c) Cross-section of the tiger salamander
retina, showing the main cell layers. GCL, ganglion cell layer; INL, inner
nuclear layer; PR, photoreceptor layer. (d) Normalized signal amplitude of
spike templates plotted as function of distance to secondary electrodes on
which the same spike template was observed. Data (blue dots) are averaged
over many spike templates. The exponential curve fit (red line) has a slope
of 28 ± 1 µm, which defines a decay constant.

Figure 2  Identifying spike templates. (a,b) Plots of peak signal amplitude on
pairs of electrodes. Three clusters have been defined (red, green and yellow
dots). Other clusters have been omitted for clarity. (c) Raw data waveforms
from the red cluster in a,b, shown with the average waveform (blue). 
(d) Subset of clean waveforms (red), shown with the average waveform (blue).
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where S is the observed waveform, Ti is the ith template, and |...|
represents the vector norm of voltages on all channels. The first
term is simply the mean squared error between the data and the fit.
The second term involves a free parameter λ that adds an incre-
mental cost for using additional templates to explain the observed
waveform. This free parameter can be viewed as taking into
account the fact that the observation of many overlapping spikes is
increasingly improbable7.

Choosing the value of λ
The value of λ was chosen by the requirement that the spike sorting

algorithm produced the fewest spike sorting errors. To define errors,
we carried out simulations in which we added noise to a spike tem-
plate and ran our template matching algorithm on the resulting volt-
age waveforms. We first added gaussian noise with an amplitude 
(30 µV) equal to twice the experimental noise. In this simulation,
there were no spike sorting errors at all, indicating that spike tem-
plates were distinct and had a high signal-to-noise ratio. This simula-
tion was highly unrealistic, however, because the noise in extracellular
recordings is dominated by signals from nearby neurons, known as
‘neural hash’, that are correlated and non-gaussian9.

The most realistic noise source are the raw data themselves. A
problem with adding templates to the real data is that the spike of
that same cell may be present already, which would make an identifi-
cation of sorting errors ambiguous. To solve this problem, we created
virtual templates by taking a real template and shifting all of its sig-
nals over by one electrode. To verify that the virtual templates had
the same structure as the real templates, we compared the mean
squared distances between real templates to those between real and
virtual templates and found that the distributions were very similar
(data not shown).

In our simulations, we shifted each virtual template by a random
time in the range ±2.8 ms, clipped the total duration at 6.4 ms, and
added a segment of the raw data chosen to include overlapping spikes
in their measured frequency. We then ran our matching algorithm
and tested whether the virtual template was identified (correct), miss-
ing (false negative), or matched with a different template (false posi-
tive). As expected, higher values of λ achieved lower numbers of false
positives at the expense of introducing more false negatives (Fig. 4f).
The minimum total error was found for a λ value of 60–90 µV. Here,
the percentage of false positives was about 0.4% and that of false neg-
atives was about 0.8%. These error rates are low in comparison to
those achieved with tetrode recording8.

Evaluating the method
To determine the fraction of cells over the array that could be
recorded by our methods, we retrogradely labeled the ganglion cells
with rhodamine dextran before making the electrical recordings
(Methods). Both ganglion cell somas and bundles of axons were visi-
ble (Fig. 4a). The number of labeled cells varied considerably from

patch to patch, but we found that a similar number of cells were
always recorded (Fig. 4b). On average, about 20% more cells were
recorded than labeled, presumably because we sometimes isolated
ganglion cells from outside the boundary of the array.

To test for errors in spike sorting, we calculated the fraction of
spikes that fell within a 2-ms refractory period. About a third of the
cells had absolutely zero refractory violations, and 90% had less than
0.1% violations (Fig. 4e). Using simulations of spike matching, we
estimated that the level of false positives in our matching algorithm
was about 0.4% (Fig. 4f). These data suggest that we can cleanly iso-
late spike trains from all or nearly all of the ganglion cells over the
array; however, a few factors may lead us to overestimate the fraction
of recorded cells.

For example, it is possible that the fluorescent dye was not trans-
ported into some of the ganglion cells. To determine the complete-
ness of our retrograde labeling, we also estimated the ganglion cell
density by counting axons in the optic nerve (Fig. 4d). The total gan-
glion cell density estimated in this fashion, 1,410 ± 180 cells/mm2,
agreed closely with the density of labeled ganglion cell somas, 1,340
± 180 cell/mm2 (Fig. 4c).
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Figure 3  Matching templates to the raw data. (a) Distribution of error
values between a single spike template and a 3.2-ms segment of raw data,
compiled over all shifted templates (black bars). The five smallest values
come from the same template with successive time shifts (red bars). 
(b) Normalized error as a function of the number of templates iteratively fit
to the raw data. (c) Example of iterative matching for the hexagonal array.
After each match, numbered 1–4, the template (red) is subtracted away
and a new template is fit to the residual (blue). (d) Resulting fit to the raw
data (blue) made with three templates (red). Panels a–d are derived from
the same segment of raw data.
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Another possibility is that some of our isolated spike trains came
from axons passing over the array rather than from cell somas. This
was not the case, however, because axonal spike waveforms had a
characteristic triphasic shape that began with a positive voltage
peak (Fig. 5a), whereas somas generated a biphasic spike waveform
that began with a negative voltage peak10 (Fig. 5b). We did record
axonal spikes in some retinal patches, but
usually could not isolate them cleanly (pre-
sumably because of the arrangement of
axons into tight bundles; Fig. 4a). In the
rare cases in which we could isolate an
axonal spike train, these spike trains were
observed to have a receptive field far from
the array (Fig. 5c).

The ganglion cell layer is known to con-
tain many displaced amacrine cells,
accounting for at least 20% of the cells in

this layer in the salamander11–13, that our array might also sense.
Measurement of the intracellular voltage of amacrine cells indi-
cated, however, that many did not fire spikes. For the subset of
amacrine cells that do spike, the spike amplitude is rarely greater
than 25 mV and the frequency content is in the 0–80 Hz band14. We
preprocessed the recorded voltages with a band pass filter between
200 and 5,000 Hz, which effectively removed such spike waveforms
from our data. In addition, extracellular measurement conditions
attenuate intracellular potentials by a factor of about 1,000 (ref. 11),
reducing most spikes from amacrine cells well below the noise level
of 10–20 µV. Although we cannot rule out the possibility that at
some point we have recorded from a spiking amacrine cell, the evi-
dence indicates that this is a very unlikely event and therefore suffi-
ciently rare that it does not appreciably change the estimated
fraction of recorded ganglion cells.

A final possibility is that we mistakenly identified two or more
templates that actually are the same cell; if so, then our count of
recorded cells would be inflated. In such cases, the cross-
correlation function between spike trains would have a refractory
window, which would persist even after combining the spike trains
(Fig. 6). In addition, the receptive field maps of two such spike
trains would be nearly identical. For all of these reasons, it was easy
to identify double-counted cells and to combine their spike trains
together. Spike trains that clearly arose from different cells had 
distinguishable templates with maximum signal amplitude on dif-
ferent electrodes (Fig. 7a,b) and had clean refractory periods 
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Figure 5  Axonal versus somatic spikes. (a) Spike
template of a cleanly isolated axonal waveform,
showing a characteristic triphasic shape. 
(b) Spike template of a somatic waveform from
the same recording. (c) Spatial receptive field
profile for the axonal waveform (red), which
arises from a location different to that of the
spatial profile of the somatic waveform (black),
as well as to those of the rest of the somatic
spikes in this experiment (cyan).

Figure 4  Evaluating the method. (a) A patch of the salamander retina placed
over a hexagonal multi-electrode array. Ganglion cells and axon bundles are
fluorescently stained with rhodamine dextran (green); electrodes and leads
of the array are black. (b) Number of recorded ganglion cells plotted against
the number of fluorescently labeled cells for seven retinal patches; three
patches were recorded with the hexagonal array (�), four with the
rectangular array (�). (c) Larger region of the retina stained with rhodamine
dextran. (d) Electron micrograph of a cross-section of the optic nerve. 
(e) Distribution of the fraction of refractory violations for 164 ganglion cells.
(f) Frequency of spike sorting errors plotted against the value of the free
parameter λ used in the spike sorting algorithm. Blue, false positives; red,
false negatives; black, total error rate.
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(Fig. 7c,d). When combined together, there
were many refractory violations (Fig. 7e)
and the cross-correlation function had no
refractory window (Fig. 7f).

Taken together, our anatomical and physi-
ological data are consistent with recording
all of the ganglion cells over the array. We
cannot rule out the possibility that a small
fraction of ganglion cells were missed, however, owing to the error
bars in our anatomical measurements. We therefore conclude, con-
servatively, that we have recorded from 80 to 100% of the ganglion
cells over the dense array.

Total coverage of visual space by the ganglion cells
Because such a large fraction of the ganglion cells over the array are

recorded by our approach, we can obtain a relatively unbiased sam-
pling of the neural population. This is significant, because other elec-
trophysiological techniques that record only a small fraction of
nearby neurons are known to have a significant bias in favor of large
neurons that produce large extracellular signals15,16. We mapped the
receptive fields of ganglion cells by using reverse correlation to a flick-
ering checkerboard (Methods). A two-dimensional gaussian provided
a good fit to the spatial profile (Fig. 8a,b). We defined the receptive
field size of a ganglion cell using the 1σ contour from the gaussian
curve fit (Methods). The distribution of receptive field sizes of 103
ganglion cells recorded from three retinas had three overlapping
peaks (Fig. 8c), consistent with three broad classes of dendritic field
size that have been observed anatomically17.

We computed the total coverage factor of the ganglion cell popula-
tion by multiplying the average receptive field area with the measured
cell density (1,410 cells/mm2). This quantity measures the number of
ganglion cell receptive fields that look at every point in visual space.
The total coverage factor was 59 ± 5 (mean ± s.e.m., n = 3 retinas),
indicating that the retina uses a highly parallel population code to
represent even the sharpest features of a visual image. This total cov-
erage factor is consistent with the total coverage of ganglion cell den-
dritic fields observed anatomically in several species17–20.

DISCUSSION
We have introduced a new recording technique based on a dense
multielectrode array—which can record signals from a ganglion
cell’s spike on many electrodes—along with a multichannel spike-
sorting algorithm. By using this technique, we can resolve ambigui-
ties arising from overlapping spike waveforms and thus isolate spike
trains from all or nearly all of the ganglion cells over the dense array.
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Figure 6  Effects of splitting one cell into two
templates. A new template, A, was formed by
scaling an existing template, B, by a factor of
1.1, and raw data were rematched including the
extra template. (a,b) Interspike interval
distribution for the spike train from templates A
and B, respectively. (c) Interspike interval
distribution after combining templates A and B
into a single spike train, showing a clear
refractory period. (d) Cross-correlation function
between spike trains from templates A and B,
showing exclusion of time intervals within the
refractory period of the neuron. Note that it is
more common for the smaller spike (template B)
to follow the larger spike, because spike
amplitude decreases during a burst.
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Figure 7  Example of two nearby ganglion cells. (a,b) Average pattern of
activity on the array when two different cells fire a spike. (c,d) Interspike
interval distribution for the two spike trains, showing clean refractory
periods. (e) Interspike interval distribution when both spike trains are
combined together, showing many refractory violations. (f) Cross-correlation
function between the two spike trains.
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Our approach to spike sorting involves several design choices: an
emphasis on recording signals from several electrodes, direct meas-
urement of spike templates, iterative matching of templates to the
raw data, and not making principled assumptions about the noise. It
is important to consider these choices in the context of previous
methods of spike sorting.

Comparison to previous methods
Many different signal processing techniques have been used to detect
and to sort neural spikes on the basis of the information captured by a
single electrode5,6,21–25. Most of these techniques rely on plotting two
or more parameters of the spike waveform, such as its peak and width
or its overlap with the first two principle components, and on choos-
ing clusters in this low-dimensional space. Because such methods
make no allowance for overlapping spikes, they are typically success-
ful only in isolating spikes from neurons that produce large signals
that are not significantly corrupted by neighboring neurons. With
this approach, a hundred or more neurons have been recorded simul-
taneously by arrays of electrodes, but such methods capture only a
small fraction of the neurons in the circuit3,4.

An algorithm for decomposing overlaps on a single electrode has
been proposed7. When an overlap is detected, this algorithm com-
pares all possible combinations of two spikes over a short range of
spike occurrence times to find the combination with the highest like-
lihood. This approach has the drawback of being computationally
expensive, particularly for three or more overlapping spikes. In addi-
tion, it requires prior knowledge of the spike rates of all of the neu-
rons—information that is not generally available in advance. An
attempt to relax the computational limitations of this procedure has
been also made5,21, in which k-dimensional trees are used to search
quickly the large space of possible combinations of spike shapes that
could account for a given spike waveform.

Both of these approaches attempt to resolve the ambiguities aris-
ing from overlapping spikes in a principled way under the assump-
tion that the noise is gaussian. It has been shown, however, that this
assumption is not valid9. A chief source of noise arises from neu-

rons that are further away from the electrode and that produce a
small spike or ‘spikelet’ when they fire an action potential. These
spikelets introduce strong temporal correlations and highly non-
gaussian statistics to the noise. Furthermore, the occurrence of
spikelets can be significantly correlated with neurons that are in the
vicinity of the electrode.

By using several closely spaced electrodes, ambiguous spike signals
can be better discriminated. This approach was implemented first in
stereotrodes (two electrodes26) and then in tetrodes (four elec-
trodes8). So far the algorithms used for multichannel spike sorting
have been a simple generalization of single-electrode methods: for
example, selecting clusters from plots of peak voltage on all four elec-
trodes8. As such, these methods do not explicitly attempt to account
for overlapping spikes.

In our approach, we have combined successful elements from pre-
vious methods. We identify spike templates by using the peak voltage
of a spike on many channels, as in tetrode recording8; however, we use
only examples of clean spikes whose waveforms are not contaminated
by overlapping spikes from other neurons. Thus, the first step of our
analysis circumvents the spike overlap problem. Next, we iteratively
match spike templates to putative spikes in the raw data by using a
heuristic approach that is similar to the principled approach
described above7. Here, we rely on the power of multichannel record-
ing to measure a unique pattern of activity when each neuron fires a
spike. Instead of making assumptions about the noise, we rely on the
fact that most of the apparent noise on each electrode is explained as
the occurrence of a spike measured further away. Last, by using an
iterative algorithm, the computational complexity of matching each
raw waveform grows linearly with the number of overlapping spikes
and thus is tractable for large data sets.

Future directions
At present, our dense array has only 30 electrodes and a larger array
would be desirable for many reasons. A multi-electrode array system
with 512 channels has been built (Litke, A.M. et al., Soc. Neurosci
Abstr. 33, 429.18, 2003), showing the scalability of the array technol-
ogy. For such large arrays, a significant challenge will be to automate
the selection of spike templates. We have applied our methods to the
favorable two-dimensional geometry of the retina; however, the
basic idea of dense sampling with many electrodes can be applied to
three-dimensional circuits such as the cerebral cortex. Implantable
silicon ‘pin’ electrodes with many channels along their length have
been developed and could be used with multichannel spike sorting
algorithms to record many neurons from a local region of the cortex
(ref. 27 and T.J. Blanche, P.A. Hetherington, C.J. Rennie, M.A. Spacek
and N.V. Swindale, Soc. Neurosci Abstr. 33, 429.19, 2003). Finally,
there have been many sophisticated algorithms developed for single-
channel spike sorting. As our multichannel algorithm is relatively
simple, it may be possible to achieve even lower rates of error by
adapting some of these previous algorithms to the analysis of multi-
channel spike waveforms.

METHODS
Electrical recording. Experiments were done on the larval tiger salamander
(Ambystoma tigrinum) in accordance with institutional animal care standards.
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Figure 8  Receptive field sizes of ganglion cells. (a) Spatial profile of a
ganglion cell receptive field (color scale), shown with the 1σ ellipse of a
gaussian curve fit (black line). (b) One-dimensional profile of the gaussian
curve fit. (c) Distribution of receptive field radii for 103 ganglion cells.
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Retinas were isolated from the eye in darkness, placed with the ganglion cell
layer facing a multi-electrode array (Multichannel Systems) and superfused
with oxygenated (95% O2/5% CO2) Ringer’s medium at room temperature
(22 °C)28. Extracellularly recorded signals were digitized at 10 kSamples/s and
stored for offline analysis.

Stimulation. Random checkerboard stimuli were displayed on a CRT monitor
at a frame rate of 120 Hz and focused onto the plane of the retina using stan-
dard optics2. In this stimulus ensemble, visual space was divided into 55-µm
squares on the retina, which allowed us to fit several squares inside the recep-
tive field center of each ganglion cell. In each square, the red, green and blue
guns of the monitor were randomly and independently turned on or off every
30 ms, resulting in a light intensity and color that flickered rapidly. The mean
intensity on the retina was 12 mW/m2, corresponding to photopic vision.

Receptive field analysis. We mapped the receptive field of each cell by calculat-
ing the average stimulus pattern preceding a spike under random checker-
board stimulation. The central region of the receptive field was identified by
finding all of the squares with a time course of the same polarity as the square
with the maximum response. The spike-triggered average (STA) in the central
region was closely approximated as the product of three functions: the tempo-
ral dynamics A(t), the spatial profile B(x,y) and the chromatic sensitivity C(l)3.
The spatial profile B(x,y) was fitted by a two-dimensional gaussian to give the
1σ radius, σ = (σ x σ y)1/2, and area, A = πσxσy.

Measuring the decay length. Each template was normalized by its maximum
amplitude, and all values at the same distance from the electrode with the
maximum signal were averaged. We fitted our data with an exponential func-
tion of distance (Fig. 1c), according to ref. 8. The slope of this curve fit gave a
decay length of 28 ± 1 µm, similar to the value found within the cortex8. The
signal amplitude no longer exceeded the noise at a distance of about 80 µm.
This indicated that arrays with greater electrode spacing would not pick up
signals from an individual ganglion cell on multiple electrodes, as verified
with an array with an electrode spacing of 100 µm (data not shown).

Retrograde labeling of ganglion cells. The eyes were removed and placed in
Ringer’s solution as described29, leaving an optic nerve stump of about 
1 mm. A dye crystal (rhodamine dextran coupled with biotin; D-1817,
molecular weight 3,000 or 10,000 Da, Molecular Probes) was placed on the
optic nerve stump for at least 2 h before further processing. Biotin enhances
active transport through the axon and thereby increases the loading of dye
into the soma. As this dye loading was strong, we typically reduced the gain
on the detector to 5% of its maximum to avoid saturation, and the fluores-
cence was bright enough to see clearly the dendrites of most ganglion cells
(although the smaller dendrites were so densely interwoven that we could
not follow these processes to their tips). Owing to their size, dye molecules
did not diffuse through gap junctions to nearby ganglion and amacrine
cells. As observed in other salamander species30, the ganglion cell density in
the tiger salamander retina did not depend strongly on the distance from
the optic disk.

Electron microscopy of optic nerve. We excised the optic nerves from sala-
manders and fixed them for 24 h at 4 °C in 3% glutaraldehyde and 6% tannic
acid. Nerve tissue was post-fixed with 1% reduced osmium tetroxide in
sodium cacodylate buffer with sucrose on ice for 2 h. To improve image con-
trast, tissues were stained en bloc with 1% aqueous uranyl acetate for 1 h.
Finally, tissues were dehydrated by ethanol, followed by a 50/50 mixture of
ethanol/propylene oxide, and infiltrated with Embed 812 resin (EM Sciences).
Blocks were polymerized for 24 h and sectioned with a Diatome 35° diamond
knife. Sections were placed on 1 × 2 mm slot grids coated with formvar carbon.
All sections were examined with a Leo 912 AB Omega energy-filtered trans-
mission electron microscope at either 80 or 100 kV. Digital micrographs were
taken with an AMT XR-60B CCD camera (Fig. 4d).

Ganglion cell density. Sections of the optic nerve were sampled by stepping
across the whole diameter of the optic nerve and counting the number of
axons in every image. This systematic sampling was required because the
density of fibers was variable at the ×5,000 magnification needed to count

axons. No obvious trend was found in axon counts or axon diameters
between the center and the periphery of the optic nerve. We estimated the
total number of fibers in the optic nerve of the salamander to be 42,200 ±
3,600 (mean ± s.e.m., n = 3 salamanders), in close agreement with estimates
made for several other species of salamanders30. The total area of the retina
was 29.7 ± 0.63 mm2 (n = 4 salamanders), giving a cell density of 1,410 ±
180 cells/mm2. We counted labeled cells as being over the array if their
somas intersected a line formed by the outer edge of the electrodes. By this
definition, the rectangular array had an area of 0.16 × 0.13 = 0.208 mm2.
Dividing the cell count by the array area gave a density of 1,340 ±
180 cells/mm2 (n = 7 experiments).

Cross-section of the retina. The eye was removed from the salamander, and
the lens and cornea were dissected away. The tissue was fixed in 4%
paraformaldehyde for 1 h and dehydrated by an overnight rinse in 30%
sucrose. Cross-sections with a thickness of 10–20 µm were cut and visualized
with a Nikon phase-contrast microscope (Fig. 1c).
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