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■ Abstract Cyclic nucleotide-gated (CNG) ion channels were first discovered in
rod photoreceptors, where they are responsible for the primary electrical signal of the
photoreceptor in response to light. CNG channels are highly specialized membrane
proteins that open an ion-permeable pore across the membrane in response to the
direct binding of intracellular cyclic nucleotides. CNG channels have been identified
in a number of other tissues, including the brain, where their roles are only beginning
to be appreciated. Recently, significant progress has been made in understanding the
molecular mechanisms underlying their functional specializations. From these studies,
a picture is beginning to emerge for how the binding of cyclic nucleotide is transduced
into the opening of the pore and how this allosteric transition is modulated by various
physiological effectors.
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INTRODUCTION

Ion channels are the transistors of the brain. They are allosteric proteins that
open and close an ion-permeable pore (a process called gating), allowing ions
to flow across the cell membrane in a regulated manner. Ion channels can support
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currents of up to 108 ions/s, while at the same time, select specific ions with greater
than 99.9% accuracy. The gating can be regulated by various stimuli including
changes in membrane voltage, the binding of extracellular or intracellular ligands,
or membrane stretch. By controlling the flow of specific ions across the lipid
bilayer, ion channels play fundamental roles in electric signaling in nerve, muscle,
and synapse. Mutations in ion channels cause several diseases including myotonia,
paralysis, cardiac arrhythmias, diabetes, cystic fibrosis, and blindness.

Ion channels have been studied using a combination of powerful techniques,
making them a good model system for understanding conformational changes in
proteins. Patch-clamp recording techniques allow measurement of single molecule
behavior and macroscopic function in real time (Hamill et al. 1981). Combined
with molecular biology, protein chemistry, voltage-clamp fluorometry, and more
recently, X-ray crystallography, ion channel physiologists are rapidly gaining an
understanding of how ion channels work as allosteric proteins. This review focuses
on a specific class of ion channels, the cyclic nucleotide-gated (CNG) channels,
and on recent progress made in understanding the molecular mechanisms for their
highly specialized functions.

Physiology of Rod CNG Channels

CNG channels were first discovered in the plasma membrane of the outer segment
of vertebrate rod photoreceptors, where they play a critical role in phototrans-
duction (Fesenko et al. 1985). CNG channels are nonselective cation channels
that are opened by the direct binding of intracellular cyclic nucleotides (Yau &
Baylor 1989). In the dark, the binding of guanosine 3′:5′-cyclic monophosphate
(cGMP) to the CNG channels causes the channels to open, allowing Na+ and Ca2+

to flow into the cell. This flow of inward current, the dark current, depolarizes the
outer segments. When light hits the retina, it activates a phototransduction cascade,
diagrammed in Figure 1 (for review, see Burns & Baylor 2001). This signal trans-
duction cascade begins with the absorption of a photon of light by the chromophore
of rhodopsin, 11-cis retinal. This absorption activates rhodopsin to bind to and ac-
tivate the G protein transducin, stimulating GTP-GDP exchange. Upon binding
GTP, transducin binds to and activates a phosphodiesterase that hydrolyzes cGMP
into 5′-GMP. The CNG channels in the plasma membrane close in direct response
to this decrease in cGMP, inhibiting the dark current and, hence, hyperpolarizing
the outer segments. This hyperpolarization is transmitted to the inner segments and
ultimately causes a decrease in the tonic release of the neurotransmitter glutamate
from the presynaptic terminals.

The sensitivity of the rod CNG channel has been optimized to detect and signal
the drop in cGMP concentration resulting from the absorption of a single photon
of light (Baylor et al. 1979). The channel’s relatively low affinity for cGMP leads
to a fast off rate for ligand and allows the channel to close quickly in response
to light (Cobbs & Pugh 1987). The fast gating kinetics of the channel reports the
level of cytosolic cGMP quickly and also improves the signal-to-noise ratio for
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photon detection (Haynes et al. 1986, Karpen et al. 1988, Matthews & Watanabe
1987, Zimmerman & Baylor 1986). Ca2+ and Mg2+ block CNG channels, making
the single-channel conductance very small under physiological conditions and,
hence, lowering the noise resulting from random gating of the channels (for re-
view, see Yau & Baylor 1989). In addition, the closure of CNG channels reduces
the cytoplasmic Ca2+ concentration (Yau & Nakatani 1985). This decrease in
Ca2+ provides negative feedback in the phototransduction cascade by stimulating
cGMP synthesis (Koch & Stryer 1988, Lolley & Racz 1982), increasing the chan-
nel’s affinity for cGMP (Hsu & Molday 1993), reducing the catalytic rhodopsin
activity produced by light (Lagnado & Baylor 1994), and accelerating rhodopsin
deactivation by phosphorylation (Kawamura et al. 1993).

Family of CNG Channels

In vertebrates, six members of the CNG channel gene family have been identi-
fied. These genes are grouped according to sequence similarity into two subtypes,
CNGA and CNGB (Bradley et al. 2001a). Additional genes coding for CNG chan-
nels have been cloned fromDrosophila melanogasterandCaenorhabditis elegans.
The phylogenetic relationship of these channels is shown in Figure 2.

The first cDNA clone for a subunit of a CNG channel (CNGA1, previously
called the rodα subunit) was isolated from bovine retina (Kaupp et al. 1989).
CNGA1 was expressed in rod photoreceptors and produced functional channels
that were gated by cGMP when expressed exogenously either inXenopusoocytes
or in a human embryonic kidney cell line (HEK293). Mutations in CNGA1 in
humans cause an autosomal recessive form of retinitis pigmentosa, a degener-
ative form of blindness (Dryja et al. 1995). Later, a second subunit of the rod
channel (CNGB1, previously called the rodβ subunit) was isolated and cloned
(Chen et al. 1993, Korschen et al. 1995). CNGB1 subunits expressed alone do

Figure 2 Phylogenetic tree of CNG channels. CNGA1, CNGA3, and CNGB1 se-
quences were from bovine. CNGA2 and CNGA4 sequences were from rat. The CNGB3
sequence was from human. TAX-2 and TAX-4 sequences were fromC. elegans. CNGL
and CNG-P1 sequences were fromD. melanogaster.
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not produce functional CNG channels, but coexpression of CNGA1 and CNGB1
subunits yields heteromeric channels with permeation, modulation, pharmacol-
ogy, and cyclic-nucleotide specificity similar to that of native channels (Chen et al.
1993, Korschen et al. 1995). CNG channels form as tetramers (Gordon & Zagotta
1995c, Liu et al. 1996, Varnum & Zagotta 1996), and recent studies using a com-
bination of different approaches suggest that native rod channels are composed of
three CNGA1 subunits and one CNGB1 subunit (Weitz et al. 2002, Zheng et al.
2002, Zhong et al. 2002).

The CNG channels from cone photoreceptors are composed of two other cloned
subunits, CNGA3 (previously called the coneα subunit) and CNGB3 (previously
called the coneβ subunit) (Bonigk et al. 1993, Gerstner et al. 2000). CNGA3
subunits, but not CNGB3 subunits, form functional channels when expressed ex-
ogenously. Mutations in human CNGA3 and CNGB3 have been linked to complete
achromatopsia (also referred to as “rod monochromacy” or “total color blindness”),
a rare, autosomal recessive inherited and congenital disorder characterized by the
complete inability to discriminate between colors (Kohl et al. 1998, 2000; Sundin
et al. 2000; Wissinger et al. 2001).

CNG channels have also been found in olfactory neurons, where they cause the
cells to depolarize in response to increased concentrations of adenosine 3′:5′-cyclic
monophosphate (cAMP) in order to transduce odorant signals (Nakamura & Gold
1987). Native olfactory channels are thought to be composed of three different sub-
units: CNGA2 (previously called the olfactoryα subunit) (Dhallan et al. 1990),
CNGA4 (previously called the olfactoryβ subunit) (Bradley et al. 1994, Liman
& Buck 1994), and an alternately spliced form of CNGB1 (CNGB1b) (Bonigk
et al. 1999, Picco et al. 2001, Sautter et al. 1998). The subunit stoichiometry and
arrangement, however, are not known. CNGA2 subunits form functional channels
when expressed inXenopusoocytes or HEK293 cells. Mice lacking CNGA2 ex-
hibit total anosmia (Brunet et al. 1996). CNGA4 subunits do not express functional
CNG channels when expressed alone. Mice lacking CNGA4 still possess olfaction
but exhibit abnormal olfactory desensitization that is associated with alterations
in the Ca2+/calmodulin modulation of the channels (Bradley et al. 2001b, Munger
et al. 2001).

CNG channels have also been found to modulate transmitter release at the
cone-bipolar cell synapse and to mediate the postsynaptic inhibitory response to
glutamate of the on-bipolar cells (Nawy & Jahr 1990, Rieke & Schwartz 1994,
Savchenko et al. 1997, Shiells & Falk 1990). In addition to the retina and olfac-
tory epithelium, CNG channels are also found in nonsensory tissues such as the
hippocampus, heart, testis, kidney, pancreas, adrenal gland, and colon where their
functions are not currently understood (Biel et al. 1993, 1994, 1996; Bradley et al.
1997; Distler et al. 1994; Kingston et al. 1996; Weyand et al. 1994). Ca2+ imaging
studies found that a rise in intracellular Ca2+ in hippocampal neurons could result
from elevated intracellular cyclic nucleotide concentrations, suggesting that CNG
channels play a role in the synaptic plasticity underlying learning and memory
(Bradley et al. 1997, Kingston et al. 1996, Leinders-Zufall et al. 1995). Indeed,
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long-term potentiation (LTP) was attenuated in mutant mice lacking CNGA2
(Parent et al. 1998).

In invertebrates, phototransduction involves a phosphoinositide enzyme cascade
(Hardie et al. 1993, Minke & Selinger 1992, Ranganathan et al. 1991). However,
a CNG channel subunit (CNG-P1) cloned fromD. melanogasteris expressed in
antennae and the visual system, suggesting that CNG channels may be involved
in the transduction of light in invertebrates (Baumann et al. 1994). A second pu-
tative CNG-like channel subunit (CNGL) was also cloned fromD. melanogaster
and found to be expressed in the brain (Miyazu et al. 2000). InC. elegans, two
CNG channel subunits, Tax-2 and Tax-4, have been cloned (Coburn & Bargmann
1996, Komatsu et al. 1996). These two CNG channels are required for chemosen-
sation, thermosensation, and normal axon outgrowth of some sensory neurons in
C. elegans.

STRUCTURE OF CNG CHANNELS

The CNG channel subunits all share the same basic architectural plan. As members
of the family of voltage-dependent K+ channels (Jan & Jan 1990), CNG channels
are composed of four subunits around a centrally located pore (Gordon & Zagotta
1995c, Liu et al. 1996, Varnum & Zagotta 1996). Each subunit contains six trans-
membrane segments (S1-S6), a reentrant P-loop, and intracellular amino-terminal,
and carboxy-terminal regions (Figure 3) (Henn et al. 1995, Kaupp et al. 1989, Liu
et al. 1996, Molday et al. 1991, Wohlfart et al. 1992). The P-loop and S6 segments
(Figure 3,red) line the ion-conducting pore, as seen in other P-loop-containing
channels such as the voltage-dependent channels, the inwardly rectifying potas-
sium channels, and the bacterial potassium channel KcsA. The carboxy-terminal
region contains a cyclic nucleotide-binding domain (CNBD) and a region con-
necting the CNBD to the S6 segment (C-linker). These structural motifs are also
seen in certain voltage-dependent potassium channels including HCN channels
(Ludwig et al. 1998, Santoro et al. 1997, 1998), HERG channels (Trudeau et al.
1995), and KAT1 channels (Anderson et al. 1992). The amino-terminal region and
the region following the CNBD (post-CNBD region) have specialized functions
for each of the CNG channel subtypes. Each of these regions is discussed, in turn,
below.

Pore

CNG channel pores are thought to be structurally similar to those of other P-
loop-containing ion channels. The basic architectural plan for the pore of this
family of channels was revealed by the crystal structure of KcsA, a bacterial
potassium channel fromStreptomyces lividans(Figure 4) (Doyle et al. 1998).
KcsA is a tetramer of identical subunits arranged with fourfold symmetry about
a centrally located pore. A single KcsA subunit has two membrane-spanning
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helices, the outer and inner helices, and a reentrant P-loop. The P-loop starts from
the extracellular side and enters the membrane as anα-helix (pore helix); it then ex-
its back extracellularly as an uncoiled strand. Within this strand, permeant cations
are coordinated by the backbone carbonyl oxygens of the amino acids TVGYG,
recognized as the signature sequence of K+-selective channels (Heginbotham
et al. 1994). Intracellular to the selectivity filter is a large (∼10 Å in diameter)
water-filled vestibule. In the center of this cavity another permeant cation is sta-
bilized through both electrostatic interactions with the pore helices and water
molecules that hydrate the cation. The inner membrane-spanning helices line the
vestibule of the channel and cross the membrane at an angle to form a helix bundle
on the intracellular side (Doyle et al. 1998). The helix bundle defines the intracel-
lular entrance to the pore, and KcsA may serve as a general model for the closed
state for this family of ion channels.

To open the pore, a conformation change is thought to occur in the inner helix.
An open conformation was revealed by the crystal structure of another ion channel,
MthK (Jiang et al. 2002a,b). MthK is structurally similar to KcsA in the P-loop
but exhibits a different conformation of the inner helix. The inner helix contains a
gating hinge that bends this helix by 30◦, creating a 12̊A opening on the intracellular
side of MthK compared with the 4̊A opening of the helix bundle of KcsA. Amino
acid conservation among a wide range of P-loop-containing channels suggests that
the KcsA and MthK structures may serve as general models for the closed and
open state conformations for this entire family of ion channels (Jiang et al. 2002b).

Experimental evidence suggests that the cytoplasmic opening of the CNG chan-
nel pore is narrow when channels are closed and widens when channels open.
Substituting a cysteine (S399C) at the cytoplasmic end of the S6 (the putative
inner helix) in a cysteine-free variant of CNGA1 channels promoted channel clo-
sure through the spontaneous formation of an intersubunit disulfide bond (Flynn
& Zagotta 2001). Because disulfide bonds are formed between cysteine residues
5 Å apart (Careaga & Falke 1992, Falke et al. 1988), this result is consistent with
a narrow cytoplasmic opening and the occurrence of a helix bundle similar to the
one in KcsA. Furthermore, this disulfide bond formed faster when channels were
closed than open, suggesting that a conformational change in the helix bundle of
CNGA1 channels widens the intracellular entrance of the pore. A widening of the
intracellular entrance is necessary to explain the voltage-dependent block by large
molecules such as tetrapentylammonium ions (TPeA) that enter the inner vestibule
and block the channel (Stotz & Haynes 1996). A wide intracellular entrance such
as this is observed in MthK. Although the helix bundle defines a narrow cyto-
plasmic opening to the pore when channels are closed, its permeability to small
cationic cysteine modifiers, such as Ag+ and MTSEA, is state independent (Flynn
& Zagotta 2001). These results are consistent with a model where the intracellular
entrance of the pore of CNG channels widens during opening but is not itself the
gate that controls permeation through the membrane.

In CNG channels, there are several pieces of evidence for conformational
changes also in the selectivity filter associated with channel gating. (a) Mutations
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in the selectivity filter have large effects on gating. This is particularly true for
E363, a residue thought to create a binding site in the permeation pathway for
monovalent and divalent cations (Bucossi et al. 1996, 1997; Gavazzo et al. 2000).
(b) Tetracaine, a local anesthetic, blocks the pore of CNG channels (Fodor et al.
1997a,b). Tetracaine had a higher affinity for closed channels than for open chan-
nels, but this state dependence was abolished by mutating E363. (c) CNG channels
that are partially activated (at subsaturating concentrations of cyclic nucleotide)
have permeation properties that differ from those of fully activated (at saturating
concentrations of cyclic nucleotide) channels (Hackos & Korenbrot 1999, Ruiz &
Karpen 1997, Taylor & Baylor 1995). (d) Cysteine-scanning mutagenesis studies
suggest that the pore helix, near the selectivity filter, undergoes a conformational
change during channel activation (Becchetti et al. 1999, Liu & Siegelbaum 2000).

Cyclic Nucleotide-Binding Domains

The CNBDs of CNG channels share sequence similarity with other cyclic
nucleotide-binding proteins including cGMP- and cAMP-dependent protein ki-
nases (PKG and PKA, respectively) and theEscherichia colicatabolite gene ac-
tivator protein (CAP) (Figure 5a). The crystal structures of CAP and PKA have
been solved and are very similar (Su et al. 1995, Weber et al. 1987). The CNBD
of CAP contains an eight-stranded antiparallelβ roll, followed by twoα-helices
called the B- and C-helices (Figure 5b). cAMP binds to CAP in theanti configu-
ration between theβ roll and the C-helix. Although the overall sequence identity
among the CNBDs of these cyclic nucleotide-binding proteins is only∼20%, the
residues that make important contacts with the bound cAMP or occur at turns
between adjacentβ strands are conserved (Figure 5a). Hence, the structure of the
CNBD of CAP has been used as a model for the ligand-binding domains of CNG
channels.

Channel activation can be thought of according to a model in which the initial
binding of ligand is followed by a concerted allosteric opening transition (Gordon
& Zagotta 1995a, Karpen et al. 1988). This model is a simplification of the more
general MWC (Monod, Wyman, Changeux) model for activation of allosteric
proteins, where the independent binding of ligand to each subunit stabilizes a
concerted allosteric opening transition (Monod et al. 1965). Consistent with this
model, the open probability of the channel is increased with increasing numbers of
ligands bound (Liu et al. 1998, Ruiz & Karpen 1997). The energetics of opening
with different numbers of ligands bound, however, suggests that the allosteric
mechanism may be more complicated.

CNG channels exhibit a high degree of cyclic nucleotide specificity. The cyclic
nucleotides cGMP, inosine 3′:5′-cyclic monophosphate (cIMP), and cAMP differ
at only three positions on their purine rings (Figure 6). All three cyclic nucleotides
can bind to the CNBD of the bovine CNGA1 channel subunits. However, bound
cGMP promotes the allosteric opening transition approximately one order of mag-
nitude greater than bound cIMP and three orders of magnitude greater than bound
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cAMP (Figure 6) (Gordon & Zagotta 1995a, Sunderman & Zagotta 1999a, Varnum
et al. 1995). Hence, the free energy of opening in CNGA1 channels is lowest with
cGMP, intermediate with cIMP, and highest with cAMP. CNGA2 channels, al-
though activated fully by saturating concentrations of both cGMP and cAMP, also
have a lower free energy of opening with cGMP than with cAMP, as evidenced
by the increased apparent affinity for cGMP compared with cAMP (Dhallan et al.
1990). For native olfactory channels or CNGA2/CNGA4 heteromeric channels,
however, cAMP and cGMP have very similar apparent affinities (Anholt 1993,
Bradley et al. 1994, Liman & Buck 1994, Nakamura & Gold 1987, Shapiro &
Zagotta 2000).

What is the molecular basis for this ligand specificity? There are at least two
important positions in the CNBD involved in determining the ligand specificity.
The first is a threonine in theβ roll corresponding to T560 in CNGA1 channels.
Mutation of T560 decreases the apparent affinity of the channel for cGMP but
has little effect on the cAMP apparent affinity (Altenhofen et al. 1991). Molecular
modeling studies suggest that this threonine and the corresponding threonine in
PKG might form an important hydrogen bond with the amino group attached
to C2 on the guanine ring of cGMP (Figure 7) (Scott et al. 1996, Weber et al.
1989). This hydrogen bond formation would require cGMP to bind in thesyn
configuration. Whereas cAMP was found in theanti configuration in the crystal
structure of CAP (Weber et al. 1987), cAMP was bound in thesynconfiguration in
PKA (Su et al. 1995). T560 cannot completely explain ligand specificity, however.
All CNG channel sequences identified so far have a threonine at this position,
although some channels, such as the catfish olfactory channel, show nearly the
same apparent affinity for cAMP as they do for cGMP (Goulding et al. 1992). In
addition, while mutation of T560 decreased the apparent affinity of the channel for
cGMP, cGMP still promoted opening much more than cAMP (Varnum et al. 1995).

The second residue involved in determining the ligand specificity is in the
C-helix. Chimeric channels in which the C-helices of the bovine rod channel and
the catfish olfactory channel were exchanged confirmed the role of the C-helix
in ligand specificity (Goulding et al. 1994). Subsequently, mutations of a single
residue on the C-helix of CNGA1 channels, D604, were found to dramatically
alter the ligand specificity (Varnum et al. 1995). In fact, the D604M mutation
caused a complete reversal of the cyclic nucleotide specificity, so that the channels
were best activated by cAMP, more poorly by cIMP, and very poorly by cGMP.
The presence of a methionine at this position in CNGA4 was sufficient to explain
the altered ligand specificity of the native olfactory channel (Shapiro & Zagotta
2000). Single-channel recording showed that in CNGA1 channels, D604 mutations
changed ligand specificity by destabilizing the free energy of opening with cGMP
and stabilizing the free energy of opening with cAMP (Sunderman & Zagotta
1999b). In CAP, the residue at the homologous position on the C-helix, T127, forms
a hydrogen bond with the N6 amino group in the purine ring of cAMP (Weber
et al. 1987). This finding led to a model for CNG channels in which the negatively
charged carboxylic acid side chain of D604 forms a pair of hydrogen bonds with
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the N1 and N2 hydrogen atoms on the purine ring of cGMP (Figure 7) (Varnum
et al. 1995). This type of hydrogen bonding has been shown to occur in solution
and in high-affinity GTP-binding proteins such as theα subunit of transducin,
EF-Tu, and H-Ras. cIMP does not contain an amino group at the 2 position in its
purine ring; hence, D604 could only form one hydrogen bond with cIMP, making
cIMP a poorer agonist than cGMP. cAMP does not contain a hydrogen at either
the 1 or the 2 position. Instead, a pair of unshared electrons at the N1 position of
cAMP are proposed to cause an unfavorable interaction with D604, making cAMP
a poor agonist for the rod CNGA1 channel. This unfavorable interaction is thought
to generate a proton-binding site that produces a cAMP-specific potentiation of
the channel at low pH (Gavazzo et al. 1997, Gordon et al. 1996).

Combined with the structure of CAP, a molecular mechanism for the conforma-
tional changes that occur in the ligand-binding domain during channel activation
was proposed (Figure 7) (Varnum et al. 1995). In this mechanism, the cyclic nu-
cleotide initially binds to the closed channel primarily by interactions between the
β roll and the ribose and cyclic phosphate of the cyclic nucleotide. The purine ring
of cGMP is also able to interact with T560 at this stage. Cyclic nucleotide binding is
followed by a conformational change in the CNBDs that is coupled to the opening
of the pore. This conformational change in the CNBDs was proposed to involve
a relative movement of the C-helices toward theβ rolls of each subunit, allowing
D604 residues to interact with the purine rings of the bound cyclic nucleotides.
This interaction could provide a significant portion of the energy required to drive
an otherwise unfavorable opening conformational change.

This mechanism is supported by additional experiments. Mutation in theβ roll
of R559, the residue that forms the primary salt bridge with the phosphate of the
cyclic nucleotides, dramatically inhibited the initial binding of ligand, decreasing
the apparent affinity of the channel for cAMP and cGMP (Tibbs et al. 1998).
Furthermore, cysteine modification of C505 in theβ roll primarily affected the
initial binding of cGMP, whereas modification of an introduced cysteine in the
C-helix, G597C, primarily affected the agonist potency (Matulef et al. 1999).
Recently, it was shown that cysteine residues in the C-helix produce an intersubunit
disulfide bond primarily when the channel is closed (Matulef & Zagotta 2002,
Mazzolini et al. 2002). This suggests that the C-helices might be nearer to each
other or more flexible in the closed state of the channel and separate upon opening,
as shown in Figure 7.

C-Linker

The C-linker appears to be important for the allosteric opening transition. Residues
in the C-linker have been shown to be responsible for modulation of CNG channels
by transition metals including Ni2+, Zn2+, Cd2+, Co2+, and Mn2+ (Gordon &
Zagotta 1995a–c; Ildefonse & Bennett 1991; Karpen et al. 1993). Ni2+ modulation
has been studied in much detail. In CNGA1 channels, H420, which is just below
the S6 segment, coordinated Ni2+ between neighboring subunits and had a higher
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affinity for the open state than for the closed state (Gordon & Zagotta 1995a,c).
As a result, Ni2+ coordination at H420 decreases the free energy of the allosteric
opening transition, potentiating the response of the channel to partial agonists and
low concentrations of full agonists. A histidine at position 396 in CNGA2 chan-
nels, equivalent to 417 in CNGA1 channels, also coordinated Ni2+ but had a higher
affinity for Ni2+ in the closed state (Gordon & Zagotta 1995b). This caused Ni2+

to increase the free energy of opening and inhibit CNGA2 channels. A histidine
scan of the region just below the S6 in CNGA1 channels found that histidines
introduced at positions 416 and 420 (Figure 8,green) caused Ni2+ to stabilize
the open state (Johnson & Zagotta 2001). In contrast, histidines introduced into
CNGA1 at positions 409, 413, and 417 (Figure 8,red) caused Ni2+ to stabilize the
closed state, inhibiting the channels. The repetition of similar effects every four
amino acids is consistent with secondary structure predictions that this region is
α helical. The state dependence of Ni2+ coordination suggests a model in which a
translation and clockwise rotation of this region relative to the central axis of the
pore are involved in channel activation (Figure 8).

Other parts of the C-linker have also been found to affect the allosteric opening
transition. TheC. elegansTAX-4 channel has a much higher cyclic nucleotide
efficacy and sensitivity than the bovine CNGA1 channel (Komatsu et al. 1996,
Paoletti et al. 1999). These differences are largely due to three residues in the C-
linker, R460, I465, and N466 (numbers correspond to CNGA1 channels) (Paoletti
et al. 1999). In addition, differences between gating of CNGA3 and CNGA2 chan-
nels have been attributed to three amino acids in the C-linker (I415, D457, and
D470) (Zong et al. 1998). Also, protons bind to H468 in CNGA1 channels, caus-
ing a potentiation similar to that caused by Ni2+ (Gordon et al. 1996). Another
residue in the C-linker near the beginning of the CNBD, C481, undergoes state-
dependent modification by the cysteine-modifying reagentsN-ethylmaleimide
(NEM) and methanethiosulfonate-ethyltrimethylammonium (MTSET) (Brown
et al. 1998, Gordon et al. 1997). A fluorophore attached to this site has also been
shown to undergo state-dependent quenching (Zheng & Zagotta 2000). These stud-
ies suggest that the entire C-linker region may be involved in the allosteric opening
transition.

Amino-Terminal Domain

The amino-terminal region of some CNG channels has been found to affect the
allosteric opening transition. CNGA2 channels have a lower free energy of opening
compared with that of CNGA1 channels (Fodor et al. 1997b, Gordon & Zagotta
1995b, Goulding et al. 1994, Liu et al. 1994). Replacing the amino-terminal domain
of CNGA1 with that of CNGA2 decreased the free energy of opening, whereas
replacing the amino-terminal domain of CNGA2 with that of CNGA1 increased
the free energy of opening (Gordon & Zagotta 1995b, Goulding et al. 1994).
Single-channel analysis showed that the CNGA2 amino terminus stabilized the
open state, causing a dramatic increase in the open probability for partial agonists
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such as cAMP (Sunderman & Zagotta 1999b). Deleting part of the CNGA2 amino-
terminal region decreased the open probability for cAMP and the apparent affinity
for cGMP, suggesting that this region has an autoexcitatory effect on channel gating
(Liu et al. 1994).

Ca2+/CaM binding to the autoexcitatory region of the CNGA2 amino-terminal
domain inhibits the channel’s allosteric opening transition (Chen & Yau 1994,
Liu et al. 1994). Olfactory channel opening allows Ca2+ to pass into the cell in
response to odorants. This increased Ca2+ binds to CaM, which in turn binds to
the autoexcitatory region of the CNGA2 amino-terminal domain, eliminating the
autoexcitatory effect and downregulating the channel’s activity (Liu et al. 1994,
Varnum & Zagotta 1997). In this way, Ca2+/CaM modulation of CNGA2 channels
plays a significant role in olfactory adaptation (Kurahashi & Menini 1997).

How is it that the amino-terminal domain, very distant from the CNBD or
pore region in primary structure, has this autoexcitatory effect on channel gating?
Using polypeptides expressed in bacteria, the amino-terminal and carboxyl-
terminal regions of CNGA2 were found to interact directly (Varnum & Zagotta
1997). Furthermore, it was found that the interaction of CNGA2 amino-terminal
and carboxyl-terminal polypeptides was blocked by addition of Ca2+/CaM, but
not by the addition of either Ca2+ or CaM alone (Varnum & Zagotta 1997). This
led to a proposed mechanism for Ca2+/CaM modulation in which the CNGA2
amino-terminal domain has an autoexcitatory effect by interacting with the CNGA2
carboxyl-terminal domain, and Ca2+/CaM inhibits CNGA2 channels by preventing
this interaction.

Ca2+/CaM inhibits rod CNG channels by binding to the amino-terminal do-
main of CNGB1 (Grunwald et al. 1998, Weitz et al. 1998) and disrupting amino-
and carboxyl-terminal interactions (Trudeau & Zagotta 2002b). However, in rod
channels, Ca2+/CaM binding to an amino-terminal domain of CNGB1 prevented
this domain from interacting with a carboxyl-terminal region distal to the CNBD
(post-CNBD region) of CNGA1 in heteromeric channels (Figure 3). Deletion of
the CNGB1 CaM-binding domain or the post-CNBD region did not affect chan-
nel gating (Trudeau & Zagotta 2002a,b). Hence, the disruption of the intersubunit
interaction between these domains by CaM is proposed to directly inhibit the
allosteric opening transition in CNGA1/CNGB1 channels.

Post-CNBD Region

As indicated above, the post-CNBD region of CNGA1 has been proposed to have
an important role in Ca2+/CaM modulation of heteromeric rod CNG channels.
This region is also important for trafficking and heteromeric assembly of the rod
channel. While deletion of this region has no effect on the expression or function
of homomeric CNGA1 channels, it virtually eliminated functional expression of
heteromeric CNGA1/CNGB1 channels (Trudeau & Zagotta 2002a). This lack
of functional expression was shown to result from a trafficking defect that
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prevented surface expression of the heteromeric channels, which could be rescued
by deletions of the CNGB1 amino terminus. This suggests that the amino-terminal/
carboxy-terminal interactions play a role in trafficking of heteromeric channels
(Trudeau & Zagotta 2002a). Recently, the post-CNBD region of CNGA subunits
was shown to contain a leucine zipper domain that forms trimers in solution,
suggesting a further role for the region in producing the 3:1 (CNGA:CNGB) stoi-
chiometry of the heteromeric channels (Zhong et al. 2002). Finally, the post-CNBD
region of CNGA1 subunits has been shown to be truncated in a form of retinitis pig-
mentosa, a truncation that likely effects the trafficking of both homomeric (Dryja
et al. 1995, Mallouk et al. 2002) and heteromeric (Trudeau & Zagotta 2002a) rod
channels.

OTHER MODULATION OF CNG CHANNELS

CNG channels were originally thought to be static sensors of the cyclic nucleotide
concentration. However, other environmental factors that can “fine tune” the sen-
sitivity of CNG channels have now been found. As already discussed, Ca2+/CaM
and transition metals modulate CNG channel activity. Several other forms of mod-
ulation of CNG channels have also been described. (a) An endogenous Ca2+-
binding protein decreased cyclic nucleotide sensitivity in photoreceptors (Gordon
et al. 1995b, Rebrik & Korenbrot 1998). This unknown protein competes with
exogenous CaM, suggesting that they act through a similar mechanism. (b) Tyro-
sine phosphorylation of the CNGA1 ligand-binding domain at Y498 decreased the
cyclic nucleotide sensitivity (Molokanova et al. 1997, 1999a). (c) Serine/threonine
phosphorylation of native rod channels decreased the cyclic nucleotide sensitivity
(Gordon et al. 1992). (d) In CNGA3 channels, phosphorylation of the ligand-
binding domain at S577 or S579 by protein kinase C decreased the cyclic nu-
cleotide sensitivity (Muller et al. 2001). (e) In CNGA2 channels, phosphorylation
of the amino-terminal domain at S93 by protein kinase C increased the cyclic
nucleotide sensitivity (Muller et al. 1998). (f ) A noncatalytic interaction of a pro-
tein tyrosine kinase with regions surrounding and including the S6 domain of
CNGA1 channels inhibited the saturating cGMP-elicited current (Molokanova &
Kramer 2001; Molokanova et al. 1999b, 2000). (g) Lipid metabolites, including
diacylglycerol, modulated native and expressed rod channels (Crary et al. 2000,
Gordon et al. 1995a, Womack et al. 2000). (h) The Na/Ca-K exchanger has been
found to be in close enough proximity to crosslink to CNGA1 channels in native
rod photoreceptors (Schwarzer et al. 2000). (i) Recent studies have shown that
the cGMP-sensitivity of cone photoreceptor CNG channels varies with a circa-
dian rhythm, although the biochemical event responsible for this is not yet known
(Ko et al. 2001). We are continuing to learn that CNG channels are not alone in the
cell, and future studies will allow us to better understand the role of environmental
factors in regulating the function of these channels.
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CNG CHANNELS C-1

Figure 3 Structural cartoon of CNG channels. For simplicity, this figure shows two
of the four subunits comprising CNG channels. The cylinders represent proposed a-
helices.
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C-2 MATULEF ■ ZAGOTTA

Figure 4 Structure of the KcsA channel. (A) Crystal structure of the KcsA channel
(Doyle et al. 1998). Each subunit is shown in a different color. A K+ ion is shown in
purple. (B) Side view of two diagonally opposed subunits. Three K+ ions in the per-
meation pathway are shown in purple.

02-HI-RESOLUTION-VERSION  9/15/2003  7:35 PM  Page 2

A
nn

u.
 R

ev
. C

el
l. 

D
ev

. B
io

l. 
20

03
.1

9:
23

-4
4.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 F
lo

ri
da

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

02
/1

4/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CNG CHANNELS C-3
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C-4 MATULEF ■ ZAGOTTA

Figure 8 Structural model of the first helix of the CNGA1 C-linker. Red
residues are positions where histidine substitution caused inhibition by Ni2+.
Green residues are positions where histidine substitution caused potentiation by
Ni2+. Gray residues are positions where histidine substitution had no effect
of Ni2+.
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