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SUMMARY

Action potentials initiate in the axon initial segment
(AIS), a specialized compartment enriched with Na+

and K+ channels. Recently, we found that T- and R-
type Ca2+ channels are concentrated in the AIS,
where they contribute to local subthreshold mem-
brane depolarization and thereby influence action
potential initiation. While periods of high-frequency
activity can alter availability of AIS voltage-gated
channels, mechanisms for long-term modulation of
AIS channel function remain unknown. Here, we
examined the regulatory pathways that control AIS
Ca2+ channel activity in brainstem interneurons.
T-type Ca2+ channels were downregulated by dopa-
mine receptor activation acting via protein kinase C,
which in turn reduced neuronal output. These effects
occurredwithout altering AIS Na+ or somatodendritic
T-type channel activity and could be mediated by
endogenous dopamine sources present in the audi-
tory brainstem. This pathway represents a new
mechanism to inhibit neurons by specifically regu-
lating Ca2+ channels directly involved in action
potential initiation.

INTRODUCTION

The axon initial segment (AIS) has the lowest threshold for

action potential (AP) initiation due to its high Na+ channel

density (Kole and Stuart, 2008), and it is therefore the site of

AP initiation in most neurons (Coombs et al., 1957; Khaliq and

Raman, 2006; Kress et al., 2008; Martina et al., 2000; Palmer

and Stuart, 2006; Schmidt-Hieber et al., 2008; Shu et al.,

2007; Stuart et al., 1997). Classically, the AIS was thought to

be enriched only in Na+ and K+ channels (Bean, 2007; Kress

and Mennerick, 2009). Using Ca2+ imaging, we recently discov-

ered that the AIS may also contain T-type (CaV3) and R-type

(CaV2.3) Ca2+ channels. AIS Ca2+ transients have been

observed with Ca2+-sensitive dyes in a variety of neuronal

classes, including brainstem interneurons, cortical pyramidal
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neurons, and cerebellar Purkinje neurons (Bender and Trussell,

2009; Callewaert et al., 1996; Lüscher et al., 1996; Schiller et al.,

1995), indicating that AIS Ca2+ channels may be a common

feature of many neuronal classes. In concert with subthreshold

Na+ channel activation, AIS Ca2+ channels contribute to local

subthreshold membrane depolarization and therefore determine

if and when an excitatory synaptic input evokes an AP (Bender

and Trussell, 2009).

The biophysical properties of voltage-gated channels in the

AIS control AP initiation. Availability of Na+ and K+ channels

depends on recent activity or membrane potential, leading to

corresponding alterations in AP waveforms and threshold

(Azouz and Gray, 2000; Goldberg et al., 2008; Hu et al., 2009;

Kole et al., 2007). T-type Ca2+ channels, which are thought to

contribute to the generation of AP bursts, inactivate as a neuron

depolarizes, altering neuronal firing patterns (Kim and Trussell,

2007; Uebachs et al., 2006). These changes occur on the time

scale of seconds; however, it remains unknown what mecha-

nisms exist for long-term control of AIS excitability through

second-messenger-dependent modification of constituent

channels.

Here, we examined regulatory mechanisms that control the

excitability of dorsal cochlear nucleus (DCN) cartwheel interneu-

rons. Cartwheel cells are ideal for studying mechanisms of AP

initiation because they intrinsically fire APs in a variety of ways,

including bursts and single spikes, and the underlying ion

channels that determine AP output in both the somatodendritic

compartment and the AIS are relatively well understood (Bender

and Trussell, 2009; Kim and Trussell, 2007). In these cells, we

found that dopamine altered neuronal output by modification of

T-typeCa2+channels involved inAP initiation.Dopamine receptor

activation, either by exogenous or endogenous agonists, acti-

vated protein kinase C (PKC), leading to inhibition of AIS T-type

channels. This pathway was specific for AIS T-type channels;

dopamine receptor activation had no effect on intrinsic cell prop-

erties, somatodendritic T-type Ca2+ channels, AIS Na+ influx, or

whole-cell K+ and persistent Na+ currents. Similar to direct antag-

onist block of AIS Ca2+ channels (Bender and Trussell, 2009),

activation of this pathway ultimately reduced the AP output of

these auditory interneurons. Thus, these data are the first direct

evidence of ion channel modulation in the AIS and suggest that

dopaminergic signaling mediates fine-scale adjustments of

neuronal output by controlling the activity of AIS Ca2+ channels.
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Figure 1. Dopamine Reduces AIS Ca2+

Transients in Cartwheel Cells

(A) Left: schematic of recording/imaging configu-

ration. Whole-cell recordings were made from

cartwheel cell somata, and Ca2+ transients were

imaged in the AIS. Top right: AP trains were

evoked by somatic current injection followed by

negative current steps to ensure that only 1 AP

was evoked per step. Bottom right: corresponding

Fluo-5F (Ca2+) and Alexa 594 (morphology) signals

in AIS.

(B–F) AP train-evoked Ca2+ influx in the AIS.

Shades correspond to drug conditions to right of

AP trains. All Ca2+ transients were computed as

the change in green fluorescence (G, Fluo-5F)

over red fluorescence (R, Alexa). DA: dopamine.

WT: wild-type.

(G) Summary of pharmacological effects on AIS

Ca2+. Values normalized to baseline DG/R ampli-

tudes. For conditions expressed as ‘‘Drug X in

Drug Y,’’ normalized DG/R amplitudes reflect any

changes mediated by Drug X relative to a baseline

period in Drug Y. Dots are single cells. Error bars

are SEM. Asterisk: p < 0.0001.
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RESULTS

Axon Initial Segment Ca2+ Channels Are Regulated
by Dopamine
Whole-cell recordings were made from DCN cartwheel cells in

acute brain slices prepared from 16- to 24-day-old mice. Cells

were filled via patch pipettes with the red volume marker Alexa

594 and the green Ca2+-sensitive fluorophore Fluo-5F.

Morphology and Ca2+ activity were visualized with a two-photon

microscope. To examine AIS Ca2+ channel modulation, we

evoked AP trains with somatic current injection and imaged

concomitant Ca2+ transients 14–18 mm from the axon hillock

(Figure 1A). Using these techniques, we showed previously that

Ca2+ transients imaged at these locations were blocked by the

T- and R-type Ca2+ channel antagonists mibefradil and SNX-

482 (Bender and Trussell, 2009). AIS Ca2+ transients were also

reduced by 50 mM Ni2+, suggesting that the AIS contains the

Ni2+-sensitive CaV3.2 T-channel subunit (Lee et al., 1999). These

channels are common targets for modulation via dopaminergic

pathways (Chemin et al., 2006; Perez-Reyes, 2003) and indeed

we found that dopamine, applied at a concentration of 500 nM

or 50 mM, decreased AIS Ca2+ transients by 27% ± 4% (n = 4)

and 32% ± 4% (n = 8), respectively (Figures 1B and 1G).

Dopamine can act through a variety of receptors, broadly

grouped into dopamine receptor type 1 (D1R and D5R) and

type 2 families (D2R, D3R, and D4R). Dopamine-mediated effects

on AIS Ca2+ transients were blocked by the D2-family specific

antagonist sulpiride (Figure 1G; 200 nM, normalized DG/R:

1.01 ± 0.02, n = 4, p < 0.0001) and mimicked by the D2-family

agonist quinpirole (Figures 1C and 1G; 1 mM, normalized DG/R:
0.66 ± 0.03, n = 10), suggesting that AIS Ca2+ channels were

regulated by D2, D3, or D4 receptors. In situ hybridization labeling

for D2-family mRNA shows D3R mRNA in the DCN, but not D2R

or D4R mRNA (Bouthenet et al., 1991; Heintz, 2004; Lein et al.,

2007). Consistent with these results, quinpirole did not reduce

AIS Ca2+ transients in D3R knockout mice (Figures 1D and 1G;

normalized DG/R: 0.96 ± 0.03, n = 6 cells, 3 animals, p < 0.001

versus wild-type). D3R heterozygotes displayed a wild-type

phenotype (normalized DG/R: 0.59 ± 0.03, n = 5, p = 0.2 versus

wild-type).

Cartwheel cells express both T- and R-type Ca2+ channels in

the AIS. These channels can be blocked by mibefradil, which

acts on T- and R-type channels, and SNX-482, which acts on

R-type channels. We observed previously that SNX-482-sensi-

tive AIS Ca2+ transients persist in the presence of mibefradil,

suggesting that mibefradil largely blocks T-type channels in the

AIS (Bender and Trussell, 2009). Therefore, to determine whether

T- or R-type channels weremodulated by dopamine, we isolated

AIS Ca2+ influx through R-type channels by imaging in the

presence of 3 mM mibefradil. Consistent with previous results,

AIS Ca2+ transients were 50.2% smaller in mibefradil compared

to Ca2+ transients imaged in other cells in control conditions

(n = 8 in mibefradil, 28 control, p < 0.0001, unpaired t test). Quin-

pirole had a small effect on these Ca2+ transients (Figure 1G;

normalized DG/R: 0.91 ± 0.04, p < 0.0001 versus quinpirole

without mibefradil). This could be due to modulation of either

R-type channels or a fraction of T-type channels that was not

blocked by 3 mM mibefradil (McDonough and Bean, 1998).

Overall, these results suggest that dopamine primarily affected

T-type channels.
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Figure 2. D3R-PKC Pathway Is Specific for

T-Type Channels Localized to the AIS

(A) Two-photon z stack of cartwheel cell. Arrow-

heads: sites of Ca2+ transients detailed in (B).

(B) Voltage steps from �100 to �60 mV evoked

a whole-cell T current (IT) and Ca2+ transients in

the AIS and dendrite. Black: baseline, gray: in

PMA.

(C and D) IT (C) and normalized DG/R (D) following

activation of D3R-PKC pathway or block of T-type

channels. Control currents were calculated as the

relative IT over a time course similar to that allowed

for drug wash-in (12 min). Ni2+ was iontophoresed

locally to the AIS. All other drugswere added to the

recording solution. Dots are single cells. Lines

connecting dots in (D) link recordings made in

the same cell in the AIS and dendrite. Dendritic

recordings are denoted with a ‘‘D.’’ Bars are

SEM. Asterisk: p < 0.05.
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D3R signaling may decrease AIS Ca2+ influx by activating

protein kinase pathways that phosphorylate AIS T-type Ca2+

channels (Perez-Reyes, 2003; Ron et al., 1999; Schroeder

et al., 1990). We found that the effects of quinpirole were

mimicked by the PKC activator phorbol 12-myristate 13-acetate

(PMA, 10 mM, normalized DG/R: 0.55 ± 0.03, n = 6; Figures 1E

and 1G), but not by the PKA activator forskolin (50 mM, normal-

ized DG/R: 1.04 ± 0.06, n = 2). Further, quinpirole-mediated

effects on AIS Ca2+ were blocked by the PKC inhibitor

GF109203X (1 mM) and the PKC inhibitor peptide PKC19–31

(5 mM, in pipette) (Figures 1F and 1G; quin. + GF: 0.95 ± 0.02,

n = 6; quin. + PKC19–31: 0.98 ± 0.02, n = 3; PMA + PKC19–31:

0.92 ± 0.02, n = 6; p < 0.0001 for each blocker versus quinpirole).

Thus, AIS Ca2+ channels were modulated by dopamine signaling

via D3R-dependent activation of PKC.

D3R-PKC Pathway Is Specific for AIS T-Type Ca2+

Channels
Pharmacological results suggest that D3R-PKC pathway modu-

lates T-type channels in the AIS. To confirm these results, we iso-

lated T-currents (IT) in voltage-clamp using a Cs+-based internal

solution and an external solution containing TTX, Cs+, NBQX,

strychnine, and SR95531. IT was isolated from other Ca2+

channel currents with voltage steps from �100 to �60 mV, and

whole-cell IT was recorded while simultaneously imaging Ca2+

transients in the AIS and a neighboring dendritic branch (Figures

2A and 2B). This voltage step protocol evoked�493 ± 46 pA IT in

cartwheel cells (n = 28). Mibefradil blocked IT by 90.7% ± 1.1%

and AIS and dendritic Ca2+ transients by 88.2% ± 1.1% and

86.5% ± 5.5%, respectively (n = 4 cells) (10 mM, required for

block from �100 mV; McDonough and Bean, 1998). Further,

the CaV3.2 selective antagonist ascorbate (300 mM; Nelson

et al., 2007) decreased AIS and dendritic Ca2+ transients, as

well as IT (Figures 2C and 2D; AIS normalized DG/R:
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0.62 ± 0.06, dendrite: 0.75 ± 0.06; IT: 0.57 ± 0.07, n = 4). These

data are consistent with previous results with 50 mM Ni2+ appli-

cation (Bender and Trussell, 2009) and suggest that cartwheel

cells express CaV3.2 channels in the AIS and dendrite.

When the D3R-PKC pathway was activated with quinpirole or

PMA, Ca2+ transients in the AIS were reduced, but surprisingly,

Ca2+ transients in the dendrites were not (Figures 2B and 2D;

e.g., quinpirole AIS normalized DG/R: 0.62 ± 0.06, dendrite:

0.96 ± 0.05, n = 5, p < 0.02, paired t test). IT was also unchanged

(Figure 2C; quinpirole normalized IT: 1.03 ± 0.01, n = 5, PMA:

1.05 ± 0.03, n = 8; p > 0.5 versus control for each), probably

because the contribution of dendritic T-type channels domi-

nated the whole-cell IT; however, it was possible that the reduc-

tion in IT due to AIS Ca2+ channel block was small compared to

the variance in IT observed over the course of an experiment. To

test whether acute blockade of AIS Ca2+ channels could affect

whole cell IT, we selectively blocked AIS Ca2+ channels with local

Ni2+ iontophoresis (Bender and Trussell, 2009). In these experi-

ments, control and Ni2+-paired currents were interleaved, elimi-

nating time-dependent changes to IT. Local Ni2+ application

reduced AIS Ca2+ transients more effectively than the D3R-

PKC pathway (Figure 2D; normalized DG/R: 0.41 ± 0.08, n = 3,

p < 0.01 versus quin. and PMA), but still whole-cell IT was unaf-

fected (Figure 2C; normalized IT: 1.00 ± 0.002, p > 0.3 versus

quinpirole or PMA). Similar results were obtainedwhen the ionto-

phoretic pipette wasmoved to an isolated dendritic branch (data

not shown), confirming that local block of a small fraction of

a cell’s T-type channels cannot be resolved in whole-cell current

recorded in the soma. Thus, dopamine regulates T-type Ca2+

channels localized to the AIS, not the dendrite.

Dopamine Activation Reduces Neuronal Output
T-type channels contribute to neuronal excitation and are acti-

vated at relatively negative membrane potentials. As a result,



Figure 3. Dopamine Reduces Action Potential Output

(A) AP bursts evoked with somatic current injection during a baseline period

(left) and after quinpirole application (right). Current injection was not altered

over the course of an experiment.

(B) Same as (A), but with PMA.

(C) Same as (B), but in the presence of mibefradil throughout the recording.

(D) Time course of AP inhibition by quinpirole and PMA. Data were normalized

to the baseline number of APs evoked per stimulus. Bars are SEM.

See also Figure S1.
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partial blockade of T-type channels with local mibefradil or Ni2+

application results in elevation of AP thresholds. Indeed, APs

evoked by a given synaptic input are either delayed or never initi-

ated under these conditions (Bender and Trussell, 2009). Since

the D3R-PKC pathway reduces AIS Ca2+ influx, its activation

should have similar effects on neuronal output. To test this, we

evoked APs with 30 ms current pulses just suprathreshold for

bursts of 2–3 APs. Cartwheel cells reliably evoked bursts

throughout whole-cell recordings (control recordings: 2.6 ± 0.3

APs/stim, 0–5 min; 2.5 ± 0.4 APs/stim, 15–20 min, n = 5), but

when the D3R-PKC pathway was activated with either quinpirole

or PMA, the number of APs evoked per stimulus was reduced by

at least 50% (Figure 3; PMA: normalized APs/stim: 0.50 ± 0.18,

n = 5; quin.: 0.35 ± 0.17, n = 5, p < 0.02 versus control for both).

These effects were not due to changes in intrinsic membrane

properties—resting membrane potential and input resistance

were unaffected by PMA or quinpirole (Figure 3; e.g., baseline

Vm: �80.1 ± 0.6 mV, PMA: �80.0 ± 0.6, p = 0.6; baseline Rin:

55.7 ± 8.3 MU, PMA: 54.1 ± 7.5, p = 0.36, paired t test). Rather,

the reduced excitability was mediated by inhibition of T-type
Ca2+ channels. When T-type channels were blocked with mibe-

fradil (3 mM), cartwheel cells did not fire characteristic AP bursts

(Kim and Trussell, 2007). When the stimulus intensity was then

increased, the AIS could be depolarized enough to evoke 2

APs with a 30 ms current injection (Figure 3C; stim. intensity:

PMA: 181 ± 21 pA; PMA + mibefradil: 327 ± 38 pA). Under these

conditions, PMA did not affect AP output (normalized APs/stim:

0.92 ± 0.07, n = 4, p = 0.86 versus control), indicating that PMA

reduced AP initiation through its actions on T-type channels.

To quantify the elevation of spike threshold by the D3R-PKC

pathway, we increased the stimulation intensity by 20 pA to

ensure that the first AP in a burst would always be present,

even in PMA or quinpirole. Relative to control experiments,

AP threshold, as detected in phase plane plots, depolarized

by 1.8 mV in quinpirole and by 1.5 mV in PMA (see Figure S1

available online; p < 0.05 for both). PMA did not affect threshold

after blockade of T-type channels with mibefradil (relative

depolarization: 0.2 ± 0.4 mV, p > 0.7 versus control), confirming

that these effects were mediated by changes to T-type channel

activity.

D3R-PKC Pathway Does Not Affect Na+ or K+ Channels
These results indicate that AIS T-type channels are modulated

by the D3R-PKC pathway; however, they do not exclude actions

on other AIS ion channels. For example, dopaminergic suppres-

sion of Na+ channel functionmight have led to reduced activation

of voltage-gated Ca2+ channels in the AIS. Indeed, dopaminergic

signaling is reported to alter Na+ channel activity, although it is

unclear if this modulation extends to AIS Na+ channels (Cantrell

and Catterall, 2001; Dai et al., 2009; Maurice et al., 2004). There-

fore, we determined whether quinpirole altered AIS Na+ channel

activity by imaging Na+ with SBFI (1 mM). In these experiments,

AIS Ca2+ channels were blocked with 100 mM Ni2+ to avoid indi-

rect effects of Ca2+ channel modulation on Na+ influx. In many

neurons, Na+ channel subtype expression varies with distance

from the axon hillock. Typically, NaV1.1 or 1.2 channels are

expressed in the proximal AIS, whereas NaV1.6 channels are

more distal (Hu et al., 2009; Lorincz and Nusser, 2008). As these

channels may be subject to different regulatory pathways, we

imaged AP train-evoked Na+ transients at two locations

(proximal: 9.7 ± 1.4 mm from the hillock; distal: 24.2 ± 2.2 mm,

n = 5). Na+ transients from individual APs were clearly resolved

with SBFI, and were not altered by 1 mM quinpirole (Figures 4A

and 4C; proximal normalized DF/F0: 1.01 ± 0.04, distal: 1.02 ±

0.02, n = 5, p > 0.5 for each location, one sample t test).

To ensure that our imaging system could detect changes in

Na+ influx that might underlie D3R-PKC pathway-mediated

reductions in neuronal output, we first mimicked the effects of

quinpirole and PMA by directly blocking Na+ channels with tetro-

dotoxin (TTX). We found that partial block of Na+ channels with

1 nM TTX was sufficient to reduce AP output to 47.1% ±

12.8% of baseline conditions (Figure S2; n = 7, p > 0.7 versus

either quinpirole or PMA). Then, we again imaged Na+ transients

in the proximal and distal AIS with SBFI. In contrast to quinpirole,

1 nM TTX reduced AP-evoked Na+ transients in both regions

(Figures 4B and 4C; proximal normalized DF/F0: 0.76 ± 0.04,

distal: 0.78 ± 0.03, n = 6, p < 0.01 for both, one-sample t test).

This reduction in SBFI signal was comparable to the block of
Neuron 68, 500–511, November 4, 2010 ª2010 Elsevier Inc. 503



Figure 4. D3R Signaling Does Not Affect Na+ or K+

(A) AP train-evoked Na+ influx in the AIS, imaged with SBFI, before (black) and after 1 mM quinpirole (gray). Na+ transients were computed as the change in SBFI

fluorescence over baseline.

(B) AP train-evoked Na+ influx in the AIS before (black) and after 1 nM TTX (gray).

(C) Summary of pharmacological effects on AIS Na+. Values normalized to baseline DF/F0 amplitudes. Dots are single cells. Error bars are SEM. Asterisk: p < 0.01.

(D) Persistent Na+ currents before (black) and after quinpirole (gray).

(E) K+ currents before (black) and after quinpirole (gray).

(F) K+ current versus step voltage. Black: baseline. Grey: quinpirole. Data from each condition superimpose. Bars are SEM.

See also Figure S2.
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Na+ currents observed by voltage clamping NaV1.1, 1.2 and 1.6

channels in heterologous expression systems (Rosker et al.,

2007), and indicate that quinpirole had no effect on AIS Na+

influx.

While transient Na+ currents cannot be clamped well in whole-

cell recordings from dendritic neurons, subthreshold, persistent

Na+ currents can. Both persistent and transient Na+ currents

may originate from the same Na+ channel source in the AIS

(Astman et al., 2006; Fleidervish et al., 2010; Taddese and

Bean, 2002). Therefore, whole-cell persistent Na+ currents

provide a second, independent measure of whether quinpirole

affects AIS Na+ channels. TTX-sensitive currents were isolated

with voltage steps from �90 to �60 mV in the presence of K+

channel, Ca2+ channel, and ionotropic blockers (Figure 4D; see

Experimental Procedures). Consistent with results obtained

with SBFI, quinpirole did not alter persistent Na+ currents

(normalized current: 0.99 ± 0.01, n = 6; p > 0.4, one-sample t test).

Dopaminergic signaling did not alter Vm or Rin in current clamp

recordings (Figure 3). This suggests that cartwheel cells lack

dopamine-sensitive inward-rectifying K+ conductances;

however, it was still unclear whether dopamine affected other

K+ conductances. To address this, we examined K+ currents

with voltage steps from�80 to +20 mV (10 mV increments), acti-

vating K+ conductances through the full AP voltage range

(Figures 4E and 4F). As with Na+ currents, quinpirole had no

effect (e.g., normalized current at �40 mV: 1.03 ± 0.06; at

0 mV: 1.00 ± 0.01; n = 8, p > 0.9, repeated-measures ANOVA).

Thus, the D3R-PKC pathway selectively modulates AIS Ca2+

channels without affecting AIS Na+ channels, persistent Na+

currents, or K+ currents.
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Dopamine Signaling in the DCN
While results described above show that dopamine can alter the

output of cartwheel cells, it is unclear whether dopaminergic

signaling occurs in the DCN, and if so, whether endogenous

dopamine could alter AIS Ca2+ channels. To examine these

questions, we first determined whether axons capable of dopa-

mine release were present in the DCN. Coronal sections were

obtained from mice expressing GFP in all neurons expressing

the dopamine synthetic enzyme tyrosine hyroxylase (TH).

Consistent with previous reports (Klepper and Herbert, 1991),

TH+ axons were most dense in the fusiform and deep layers,

with comparably less innervation in the molecular layer

(Figure 5B). This localization could position TH+ fibers close to

cartwheel cell initial segments, since cartwheel somata are often

located near the molecular/fusiform cell layer border (Figure 5A).

To determine whether TH+ fibers appose cartwheel axons, we

made acute slices from TH-GFP animals and filled cartwheel

cells with Alexa 594. GFP and Alexa 594 were visualized simulta-

neously with two-photon microscopy (excitation wavelength:

880 nm). TH+ fibers often passed near cartwheel cell initial

segments but did not overlap in 10 of 11 cells (Figures 5C and

5D; shortest distance between process centers: 2.6 ± 0.6 mm,

range: 0.25–6.52 mm). Given their proximity to the cartwheel

AIS, these fibers are a potential source of dopamine.

We next used fast-scan cyclic voltammetry to assess the

release of monoamines from the TH+ fibers in the DCN following

stimulation (Heien et al., 2004). A carbon fiber recording elec-

trode was placed serially in the center of the molecular, fusiform,

and deep layers, parallel to layer borders. Release was evoked

using a monopolar glass electrode placed in the same layer,



Figure 5. MonoamineAnatomy andRelease

in the DCN

(A) Schematic DCN circuit. Excitatory synapses

are represented by filled circles, inhibitory

synapses by open circles. Cartwheel cell somata

are typically located near molecular/fusiform cell

layer border.

(B) TH+ axonal fibers in the DCN. Image is a z stack

of a 50 mm confocal series. Grayscale inverted for

clarity. Dashed lines denote layer borders. ML:

molecular layer, FCL: fusiform cell layer, DL:

deep layer.

(C) Z stack of cartwheel cell filled with Alexa 594 in

a slice from a TH-GFP animal. Recording pipette

exits cell on left. GFP-TH+ axonal fibers are in

green, cartwheel cell is filled with Alexa 594 (red).

(D) Single optical section of closest apposition of

TH+ fiber and cartwheel cell axon.

(E) Fast-scan cyclic voltammetric recordings

versus time in DCN layers in response to local

electrical stimulation in the same layer. Data are

single traces all from one slice. Onset and offset

of stimulation are indicated by the black bar. Layer

abbreviations are as in (B).

(F) Summary of peak dopamine amplitudes in

cochlear nucleus layers. Bars are SEM. Asterisk:

p < 0.001. n = 12 slices. Layer abbreviations are

as in (B).

(G) Top: representative voltammagram recorded

in the fusiform layer. Bottom: voltammagram in

response to exogenous dopamine delivered via

iontophoresis.

(H) Effect of GBR 12909 on voltammetric record-

ings in the fusiform layer. Data are single traces.
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with trains of 10 stimuli delivered at 40 Hz. Voltammograms

recorded in the fusiform cell layer following stimulation were

similar in profile to those of exogenous dopamine applied via

iontophoresis (Figure 5G). Voltammetric transients were largest

in the fusiform and deep layers of the DCN and relatively small

in the molecular layer (Figures 5E and 5F). When reuptake was

blocked with the specific dopamine transport blocker GBR

12909 (300 nM), voltammetric current increased to 158% ±

15% of baseline (Figure 5H; n = 12, p < 0.01, paired t test) and

their decay slowed by 202%± 29% (p < 0.01, paired t test; base-

line t: 1.7 ± 0.2 s, range: 0.8–2.7 s, n = 12). These effects were

comparable to those observed in the striatum (Chen and Rice,

2001) and they indicate that dopamine is released from TH+

fibers in the DCN.

To determine if this endogenous dopamine was sufficient to

alter AIS Ca2+, we assayed AP-evoked AIS Ca2+ transients

before and after local stimulation of dopaminergic fibers. In these

experiments, extracellular Ca2+ was maintained at 2.4 mM to

match voltammetry experiments, and Ca2+ was imaged with
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Fluo-4FF to prevent dye saturation. Iono-

tropic, GABAB, and mGluR transmission

was blocked throughout. Release was

evoked using the same stimulation train

as in voltammetry experiments (see

Experimental Procedures). Stimulating
electrodes were placed within 30 mm of visualized cartwheel

cell axons, but unfortunately we had no positive control to

know whether this placement recruited TH+ fibers that were in

close proximity to the AIS of the recorded cell. As a result, our

findings were mixed: AIS Ca2+ transients were decreased

following stimulation in two cells, but in six others, no change

was observed (Figure 6A).

If this experiment was limited by our ability to place the stimu-

lating electrode in the proper position to recruit TH+ fibers, then

the success rate should improve by increasing the effective area

of dopaminergic signaling. Therefore, we attenuated monamine

reuptake with 300 nM cocaine. In cocaine, AIS Ca2+ transients

were decreased in 4/7 cells. These effects were not observed

in any of 8 cells in the presence of 200 nM sulpiride and

300 nM cocaine (Figures 6B–6D; p < 0.02, cocaine versus

cocaine + sulpiride), indicating that changes in AIS Ca2+ were

indeed due to dopaminergic signaling.

Because of the uncertainty of evoking release with local elec-

trical stimulation, we did not test whether AP output was altered.
November 4, 2010 ª2010 Elsevier Inc. 505



Figure 6. Electrical Stimulation of Dopaminergic Fibers Affects AIS

Ca2+

(A) AP train-evoked (top) Ca2+ transients (bottom) in the AIS, imaged with Fluo-

4FF. Ca2+ transients were imaged before (black) and after (gray) dopamine

release evoked with local electrical stimulation.

(B) Same as (A), but with 300 nM cocaine present throughout experiment.

(C) Same as (A), but with 300 nM cocaine and 200 nM sulpiride present

throughout experiment.

(D) Summary of endogenous dopaminergic fiber stimulation experiments.

Values normalized to baseline DG/R amplitudes. Dots are single cells. Grey

bar represents 23 standard deviation of the cocaine + sulpiride condition,

centered on its mean. Any decrements in Ca2+ transients below this bar

were considered successes.

Figure 7. Amphetamine Reduces AIS Ca2+ and Spike Output

(A) AP train-evoked Ca2+ influx in the AIS, imaged with Fluo-5F. Colors corre-

spond to drug conditions to right of AP trains.

(B) Summary of amphetamine effects on AIS Ca2+. Dots are single cells. Bars

are SEM. Asterisk: p < 0.05.

(C) Time course of AP inhibition by amphetamine.When required, sulpiride was

present throughout the recording. Data normalized to baseline number of APs

evoked per stimulus. Bars are SEM.

See also Figure S1.
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Instead, we utilized a pharmacological approach and evoked

dopamine release by reversing monoamine transporters with

amphetamine (10 mM). In contrast to local electrical stimulation,

amphetamine consistently decreased AIS Ca2+ transients

(Figures 7A and 7B; normalized DG/R: 0.57 ± 0.05, n = 4).

Amphetamine effects were blocked by sulpiride (normalized

DG/R: 0.99 ± 0.03, n = 3, p < 0.001, unpaired t test). Similar to

results with quinpirole and PMA, amphetamine reduced the

number of APs evoked by 30 ms somatic current pulses

(Figure 7C; amphetamine: normalized APs/stim: 0.42 ± 0.15,

n = 6; amphetamine in sulpiride: 1.01 ± 0.03, n = 5, p < 0.01)

and raised AP threshold 1.7 ± 0.4 mV (n = 6, p < 0.02 versus

amphetamine in sulpiride; Figure S1). Thus, these results estab-

lish that dopamine is released from TH+ fibers in the DCN and

can act on cartwheel cell D3R to alter AIS Ca2+ and alter neuronal

output.

DISCUSSION

Our results describe a novel mechanism for inhibition of AP initi-

ation by selective dopaminergic modulation of Ca2+ channels in

the AIS. Dopamine decreased Ca2+ influx through AIS T-type

channels without altering intrinsic membrane properties, allow-

ing us to isolate the effects of AIS Ca2+ modulation on AP output.

We found that lowered AIS Ca2+ current reduced the rate of local

membrane depolarization, which in turn reduced activation rates
506 Neuron 68, 500–511, November 4, 2010 ª2010 Elsevier Inc.
of local Na+ channels (Bender and Trussell, 2009), raising AP

threshold and thereby reducing AP output.

Several lines of evidence suggest that dopamine-mediated

reductions in AIS Ca2+ were the result of decreased Ca2+ influx

through T-type Ca2+ channels. AIS Ca2+ transients were reduced

by D3R-PKC pathway activation in current clamp (Figure 1), but

also in voltage clamp when T-type currents were isolated

(Figure 2). This argues against the possibility that dopamine

altered membrane potential in the AIS, which then indirectly

altered local Ca2+ influx. Another possibility is that, since activa-

tion of AIS Ca2+ and Na+ channels mutually support regenerative

responses (Bender and Trussell, 2009), reductions in local Na+

influx could in turn reduce Ca2+ influx; however, neither AP-

evoked Na+ transients imaged in the AIS or persistent Na+

currents were affected by quinpirole (Figure 4). Thus, dopamine

receptor activation directly modulates AIS T-type channels.

While at this time AIS Ca2+ channels have been most thor-

oughly described in cartwheel cells, Ni2+-sensitive AIS Ca2+ tran-

sients have been observed in a variety of cell types (Bender and

Trussell, 2009), raising the possibility that AIS Ca2+ channel

modulation is a common mechanism for control of neuronal

excitability. Indeed, dopamine reduces neuronal excitability, as-

sessed via whole-cell somatic current injection, in a variety of cell
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types, including prefrontal cortex and hippocampal pyramidal

cells (Gulledge and Jaffe, 1998; Stanzione et al., 1984; Tseng

and O’Donnell, 2004), avian basal ganglia spiny neurons (Ding

and Perkel, 2002), and striatal interneurons and medium spiny

neurons (Hernandez-Lopez et al., 2000; Maurice et al., 2004).

Direct tests will be needed to determine whether alterations to

AIS Ca2+ influx contribute to reduced excitability in these cells

types.

Axon Initial Segment Specificity
Some reports show that T-type Ca2+ channels can be downregu-

lated by both D2R family agonists and PKC, either by reducing

open probability or by hyperpolarizing inactivation curves (Lledo

et al., 1992; Marchetti et al., 1986), but others show that T

currents are not regulated (Chemin et al., 2006; Perez-Reyes,

2003). This disparity suggests that channel regulation depends

on a specific set of conditions, fulfilled only when all components

are present. We observed a similar mix of results in cartwheel

cells: D3R activation reduced Ca2+ influx through axonal, but

not dendritic, T-type channels. This specificity suggests that

either key components of the D3R-PKC pathway are localized

to the AIS or that T-type channels localized to the AIS are

uniquely sensitive to neuromodulation. Of the three T-channel

subtypes, the ascorbate and Ni2+-sensitive CaV3.2 subtype is

the most common neuromodulatory target, due to the presence

of unique phosphorylation sites found in the intracellular loop

between transmembrane domains II and III (Chemin et al.,

2006; Lambert et al., 2006). Therefore, we tested if CaV3.2 chan-

nels were exclusively localized to the AIS, but we found that both

AIS and dendritic IT-evoked Ca2+ transients were blocked by

CaV3.2-selective antagonists (Figure 2). Thus, selective initial

segment modulation is likely not due to the differential localiza-

tion of T-type isoforms, though we cannot rule out the possibility

that the AIS contains a unique splice variant of the CaV3.2

subtype (Chemin et al., 2006). Most likely, specificity is conferred

by upstream components of the D3R-PKC pathway, or through

co-localization of D3R, PKC, and T-type channels mediated by

the cytoskeleton protein ankyrin G, which is restricted to the

AIS (Kordeli et al., 1995; Rasband, 2010).

PKC-dependent reductions in AP output occurred within

minutes of agonist application (Figures 3 and 7). While protein

kinases can translocate upon activation (Zhao et al., 2006), this

time scale limits the distance PKC could move before acting

on AIS T-type channels. PKA has been shown to translocate

from dendritic shaft to spine within seconds of PKA activation

(Zhong et al., 2009), but longer distances (e.g., from nucleus to

plasma membrane in HEK293 cells, �5 mm) require >30 min

(O’Flaherty et al., 2001). Therefore, we hypothesize that PKC is

activated by D3Rs and acts on Ca2+ channels within a small

domain, with both D3Rs and PKC localized to the AIS.

PKC comprises a family of protein kinases, some of which

cluster with remarkable subcellular precision. In the AIS, PMA-

induced reductions in Ca2+ influx were blocked by GF 109203X

(Figure 1), a high-affinity inhibitor of classical, Ca2+-dependent

PKC isoforms, including PKC-a, PKC-b, PKC-g, and PKC-3

(Toullec et al., 1991). Of these, D3R agonists have been shown

to activate PKC-g, inducing a translocation from the cytosol to

the cell membrane (Glaser et al., 2003). Consistent with these
results, PKC-g is localized to the AIS in cerebellar Purkinje

neurons (Cardell et al., 1998), which share considerable genetic,

electrophysiological, and morphological homology with cart-

wheel cells (Berrebi et al., 1990), and PKC-g mRNA is highly

expressed in both Purkinje cells and cartwheel cells (Lein et al.,

2007). Thus, PKC-g expressed in the AIS may mediate dopami-

nergic regulation of AIS Ca2+.

Impact of AIS Ca2+ Channel Modulation on AP Initiation
Na+ channel subtypes are differentially compartmentalized in the

AIS, with NaV1.1/1.2 channels localized proximal and NaV1.6

channels localized distal to the soma (Hu et al., 2009; Lorincz

and Nusser, 2008; Osorio et al., 2005). Because NaV1.6 channels

have a low activation threshold, APs initiate in the distal AIS

(Hu et al., 2009; Kole and Stuart, 2008; Palmer and Stuart,

2006; Royeck et al., 2008). Interestingly, NaV1.6 channels lack

a key serine residue, S573, required for phosphorylation-medi-

ated modulation (Cantrell and Catterall, 2001; Maurice et al.,

2001), suggesting that the Na+ channels responsible for AP initi-

ation may be insensitive to protein kinase-based modulation.

Na+ imaging supports this idea (Figure 4), indicating that quinpir-

ole did not alter Na+ influx in the cartwheel cell AIS.

We found that the D3R-PKC pathway acted not on AIS Na+

channels but on AIS T-type Ca2+ channels. This may be an

advantageous mechanism for regulating neuronal output. For

example, if NaV1.6 channels were downregulated, not only

would AP initiation probability be reduced, but the rising phase

of the AP would also be altered significantly. This would likely

alter neurotransmitter release at downstream axonal boutons,

which is dependent on the waveform of the incoming AP (Kole

et al., 2007). Since AISCa2+ channels are not directly responsible

for the rising or falling phases of an AP, modification of AIS Ca2+

channels could determine whether or not a given stimulus results

in AP initiation while leaving the AP waveform largely unaffected.

Further, T-type Ca2+ channels are strongly linked to bursting

activity in many neurons, especially when bursts are evoked

from hyperpolarized potentials (Lisman, 1997). Indeed, quinpir-

ole has been shown to reduce bursting behavior in hippocampal

pyramidal cells (Stanzione et al., 1984), though it remains unclear

whether these changes were mediated by AIS Ca2+ channel

modulation. In cartwheel cells, bursts at the onset of a stimulus

are preferentially evoked from more hyperpolarized potentials

(Kim and Trussell, 2007) and, as such, may serve to encode

the recentmembrane potential history of a cartwheel cell to post-

synaptic targets (Uebachs et al., 2006). Alterations in AIS Ca2+

therefore may act as a switch, controlling how synaptic inputs

are encoded as APs.

Ca2+ activates many neuronal signaling pathways, from

transmitter release to gene regulation. Therefore, it is likely that

AIS Ca2+ channels contribute not just to local membrane depo-

larization, but also to Ca2+-dependent signaling in the AIS. The

overall length and location of the AIS relative to the soma

dramatically influences neuronal excitability, and this location

is fine tuned to the computational tasks of a given neuron (Kress

et al., 2010; Kuba et al., 2006). Recent results in both chick audi-

tory brainstem and cultured hippocampal neurons suggest that

the AIS position and size are dynamically regulated by recent

experience (Grubb and Burrone, 2010; Kuba et al., 2010). This
Neuron 68, 500–511, November 4, 2010 ª2010 Elsevier Inc. 507
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regulation appears to be homeostatic: increased activity

promotes a distal movement of the AIS from the soma, conse-

quently lowering neuronal excitability (Grubb and Burrone,

2010), whereas sensory deprivation promotes an increase in

the length of the AIS, increasing overall Na+ receptor number

and thus enhancing neuronal excitability (Kuba et al., 2010).

While it has yet to be tested in vivo, these plastic changes in

AIS position were mediated by low-threshold Ca2+ channel

activity in cultured neurons (Grubb and Burrone, 2010). These

results, combined with those implicating Ca2+-dependent

processes in the dismantling of the AIS after ischemic insult

(Schafer et al., 2009), strongly suggest that AIS Ca2+ channels

play an important role in the maintenance and plasticity of the

initial segment.
Implications for Auditory Processing
Neuromodulators play a key role in sensory processing, altering

neural circuit dynamics to aid in feature extraction (Hurley et al.,

2004). While the cellular mechanisms of neuromodulation have

been described primarily in higher brain regions, it has become

increasingly clear that neuromodulation occurs at even the

earliest stages of sensory processing (Hurley et al., 2004;

Kothmann et al., 2009; Petzold et al., 2009). Dopaminergic

projections from the brainstem to the cochlea have been

proposed to have a protective effect on acoustic function

(Darrow et al., 2006). Our data suggest that dopaminergic

signaling plays a role in processing of auditory signals in the

DCN. In this nucleus, direct auditory nerve input is compared

with nonauditory modalities that may encode for head orienta-

tion and self-generated noise, aiding in sound localization (Oertel

and Young, 2004; Shore and Zhou, 2006; Young and Davis,

2001). Synapses conveying nonauditory information exhibit

robust synaptic plasticity (Fujino and Oertel, 2003; Tzounopou-

los et al., 2004), suggesting that circuits in the DCN can be

altered by experience. Catecholaminergic signaling potentially

adds another level of experience-dependent modulation to

DCN processing. Our results suggest that dopaminergic activity

would dramatically alter the output of cartwheel cells, either by

reducing overall activity or by selectively lowering burst output.

Within a cartwheel cell, AIS dopaminergic signaling could affect

dendritic processing, since bursts evoke large dendritic Ca2+

transients (Molitor and Manis, 2003; Roberts et al., 2008). Post-

synaptic to cartwheel cells, this pathway could alter inhibitory

filtering of nonauditory information, which is conveyed by parallel

fibers that synapse on both cartwheel and fusiform cells

(Figure 5A). Dopamine could serve to alter the balance of excita-

tion that fusiform cells receive from auditory and nonauditory

streams, thereby altering DCN output. It will therefore be of great

interest to determine the conditions under which dopaminergic

signaling is recruited in the cochlear nucleus and the overall

effect dopamine signaling has on sound processing.
EXPERIMENTAL PROCEDURES

Electrophysiology

All procedures were in accordance with OHSU IACUC guidelines. Following

anesthesia, coronal brainstem slices (210 mm) were made from P16–24 CBA,

ICR, or C57mice. Transgenic animals (BAC TH-GFP and D3�/�/+/�) were gen-
508 Neuron 68, 500–511, November 4, 2010 ª2010 Elsevier Inc.
otyped by PCR. No differences were observed across mouse strains, and

results were pooled. Cutting solution contained (in mM) 87 mM NaCl, 25 mM

NaHCO3, 25 mM glucose, 75 mM sucrose, 2.5 mM KCl, 1.25 mM NaH2PO4,

0.5mMCaCl2, and 7mMMgCl2; bubbled with 5%CO2/95%O2; 4
�C. Following

cutting, slices were incubated in the same solution for 30 min at 33�C, then at

room temperature until recording. Recording solution contained (in mM) 130

NaCl, 3 KCl, 2.4 CaCl2, 1.3 MgSO4, 1.2 KH2PO4, 20 NaHCO3, 3 Na-HEPES,

10 glucose; bubbled with 5%CO2/95%O2; 32-34
�C. To avoid dye saturation,

CaCl2 was reduced to 1 mM and MgSO4 was raised to 2.7 mM for all

experiments in which AIS Ca2+ transients were evoked by AP trains in current

clamp and imaged with Fluo-5F. For all other experiments, including

AP-evoked AIS Ca2+ imaging with Fluo-4FF, 2.4 mM CaCl2 was used. In all

recordings, 10 mMNBQX, 0.5 mM strychnine, and 20 mMSR95531 were added

to the recording solution to block synaptic activity. When endogenous dopa-

mine sources were stimulated electrically, 50 mM D-AP5, 2 mM CGP-55845,

1 mM MCPG, and 100 mM LY 341495 were also added to the recording solu-

tion to block NMDA, GABAB, and mGluR transmission.

Cartwheel cells were visualized with Dodt contrast optics and identified

based on their laminar position, dendritic morphology, and ability to fire

complex spikes in response to somatic depolarization (Wouterlood and Mug-

naini, 1984). For current clamp recordings, patch electrodes (Schott 8250

glass, 3–4 MU tip resistance, <10MU series resistance) were filled with a solu-

tion containing (in mM) 113 K-Gluconate, 9 HEPES, 4.5 MgCl2, 0.1 EGTA, 14

Tris2-phosphocreatine, 4 Na2-ATP, 0.3 tris-GTP; �290 mOsm (pH 7.2–7.25).

For Na+ imaging, 1 mM SBFI was added to the pipette solution. For Ca2+

imaging, EGTA was omitted while 250 mM Fluo-5F and 20 mM Alexa 594 were

added to the pipette solution. Electrophysiological data were recorded at 20–

50 kHz and filtered at 10 kHz using a Multiclamp 700B amplifier (Molecular

Devices), and acquired with an ITC-18 interface (Instrutech) and Igor Pro

(Wavemetrics). Vm was held < �75 mV with constant current injection. For

imaging experiments, AP trains were evoked via somatic depolarization

(1–2 nA, 2 ms), followed by hyperpolarizing steps to prevent AP burst genera-

tion (2–400pA, 10ms). For experiments assayingAPoutput followingD3R-PKC

pathway activation, AP bursts were evoked with 30 ms step depolarizations.

Baseline and postdrug measurements of Vm and Rin are the average of �5 to

0 and 5 to 15min following drug application, respectively. Vmwas held towithin

2%of baseline values, andcellswere excluded if Rin changedby>±7.5%.Data

were corrected for a measured junction potential of 12 mV.

Two-Photon Imaging

A two-photon imaging system (Prairie Technologies) was used as described

previously (Bender and Trussell, 2009). The laser was tuned to 810 and

790 nm for Ca2+ and Na+ imaging, respectively. Epi- and transfluorescence

signals were captured through a 603, 1.0 NA objective and a 1.4 NA oil immer-

sion condenser (Olympus). Fluorescence was split into red and green channels

using dichroic mirrors and band-pass filters (epi: 575 DCXR, HQ525/70,

HQ607/45; trans: T560LPXR, ET510/80, ET620/60; Chroma). Green fluores-

cence (Fluo-5F, SBFI) was captured with R9110 or H8224 photomultiplier

tubes (PMTs, Hamamatsu). H8224 PMTs have a higher signal-to-noise ratio

than R9110 PMTs. This difference is evident in individual examples in Figure 1,

which were imaged with either R9110 (e.g., Figures 1E and 1F) or H8224 PMTs

(e.g., Figures 1B–1D). All SBFI and Fluo-4FF imaging experiments were per-

formed with H8224 PMTs. Red fluorescence (Alexa 594) was captured with

R9110 PMTs. Data were collected in linescan mode (2–2.4 ms/line, including

mirror flyback). For Ca2+ imaging, data were presented as averages of

20–40 events per site, and expressed as D(G/R)/(G/R)max*100, where

(G/R)max was the maximal fluorescence in saturating Ca2+ (2 mM; Yasuda

et al., 2004). For Na+ imaging, data were presented as averages of 20 events

per site, and expressed as DF/F0, where F0 is the baseline fluorescence

0–200 ms before stimulus onset. Ca2+ and Na+ transient peaks were calcu-

lated from the peak of exponential fits to the fluorescence decay following

stimulus offset.

Voltage Clamp of Ca2+, Na+, and K+ Currents

For Ca2+ and Na+ currents, internal solution contained (in mM) 110 CsMeSO3,

40 HEPES, 1 KCl, 4 NaCl, 4 Mg-ATP, 10 Na-phosphocreatine, 0.4 Na2-GTP,

0.5 Fluo-5F, 0.02 Alexa 594; �290 mOsm (pH 7.22), voltages adjusted for
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10 mV junction potential. For K+ currents, internal solution was the same as for

current clamp recordings.

T-type Ca2+ currents were activated with 100 ms voltage steps from �100

to �60 mV. Leak currents were subtracted using a P/4 protocol with �10 mV

steps from �80 mV. Experiments were performed in the presence of 500 nM

TTX, 20 mM SR95531, 500 nM strychnine, 10 mM NBQX, 1 mM Cs+, and

2.4 mM external Ca2+. Local Ni2+ iontophoretic block of AIS Ca2+ channels

was performed as described previously (Bender and Trussell, 2009). Phos-

phates were omitted from the recording solution for these experiments.

Persistent Na+ currents were activated with 500 ms voltage steps from �90

to �60, with leak currents subtracted with �7.5 mV steps from �80 mV.

Current amplitudes were calculated as the average of the last 100 ms of

each step. Experiments were performed in 20 mM SR95531, 500 nM strych-

nine, 10 mM NBQX, 10 mM TEA, 2 mM 4-AP, 200 mM Cd2+, 3 mM mibefradil,

and 1 mM Cs+.

K+ currents were activated with 500 ms voltage steps from �80 to 0 mV in

10 mV increments. Current amplitudes were calculated as the average of the

last 10 ms of each step. Experiments were performed in 500 nM TTX, 20 mM

SR95531, 500 nM strychnine, 10 mM NBQX, and 1 mM Cs+. Ca2+ channels

were not blocked to allow for activation of Ca2+-dependent K+ channels.

Electrochemistry

Glass-encased carbon fiber electrodes (diameter 7 mm, length 30–50 mm)were

placed �100 mm below the slice surface, parallel to the ependyma, in the

center of each DCN layer. Electrodes were fabricated as described previously

(Ford et al., 2009; Stamford, 1990). Prior to use, the cut electrode tip was

placed in isopropanol purified with activated carbon for 10 min. Monoamine

release was evoked with a glass stimulating electrode (stimulation: 103 at

40 Hz, 33 mA, 0.5 ms each) placed in the same layer. This stimulus evoked

near-maximal dopamine release within each train and mimicked burst activity

commonly observed in dopaminergic neurons. Ten Hertz triangular waveforms

(�0.4 to +1.3 V versus Ag/AgCl, 400 V/s) were used for voltammetric recording

of monoamines. Background-subtracted cyclic voltammogram currents were

obtained by subtracting 10 cyclic voltammograms obtained before stimulation

from voltammograms obtained after stimulation. After subtraction, two-

dimensional voltammetric color plots were used to examine the data. To deter-

mine the voltammetrically detected monoamine time course, the current at the

peak oxidation was plotted against time. As observed in other brain regions,

voltammetric responses showed run down (Rice et al., 1997). Therefore, for

laminar profiles, we stimulated only once in each layer. To assess the effects

of GBR 12909, we limited run down by stimulating every 5 min. GBR 12909

was added to the bath only after responses stabilized. Due to limitations in

maintaining stable whole-cell recordings >1 hr, trains were evoked at higher

frequencies (303 at 0.05 Hz) for experiments described in Figure 6. Transmis-

sion may have run down during these protocols, but effects of dopaminergic

signaling were still observed. Decay kinetics were determined by a single

exponential fit from 90% of the peak (�1.5 s post-stimulation) to 10 s post-

stimulation. Currents were calibrated against dopamine standards ranging

from 0.05 to 1 mM.

Immunohistochemistry

Amouse expressing GFP in TH+ cells was fixed with 4% paraformaldehyde via

transcardial perfusion. Coronal sections (50 mm) containing the DCNwere per-

meabilized with 0.2% Triton-X, blocked with 10% normal donkey serum, and

stained with an anti-GFP antibody conjugated to Alexa 488 (1:500, Invitrogen).

Sections were subsequently washed, dehydrated and delipidized, then rehy-

drated and coverslipped with Fluoromount G (Southern Biotechnology Asso-

ciates). Fluorescence was acquired with a confocal microscope (603 objec-

tive, 1.42 NA).

Chemicals

Fluo-5F pentapotassium salt, SBFI tetraammonium salt, and Alexa Fluor 594

hydrazide Na+ salt were from Invitrogen. SR95531, D-AP5, and NBQX were

from Ascent. (�)-quinpirole hydrochloride, PMA, (S)-MCPG, CGP-55845,

LY-341495, tetrodotoxin (TTX), and GF 109203X were from Tocris. PKC19–31

was from Calbiochem. All others were from Sigma.
Statistics

All data are shown as mean ± standard error (SEM). An ANOVA followed by

Fisher’s PLSD post hoc test was used unless otherwise noted (significance,

p < 0.05).

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and can be found with this

article online at doi:10.1016/j.neuron.2010.09.026.
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