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Amyloid peptides mediate hypoxic increase of L-type
Ca2+ channels in central neurones
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Abstract

Prolonged hypoxia, encountered in individuals suffering from various cardiorespiratory diseases, enhances the likelihood of subsequently
developing Alzheimer’s disease (AD). However, the underlying mechanisms are unknown, as are the mechanisms of neurodegeneration
of amyloid� peptides (A�Ps), although the latter involves disruption of Ca2+ homeostasis. Here, immunohistochemistry demonstrated that
hypoxia increased production of A�Ps, an effect which was prevented by inhibition of either� or� secretase, the enzymes required for liberation
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f A�P from its precursor protein. Whole-cell patch clamp recordings showed that hypoxia selectively increased functional exp
-type Ca2+ channels. This was prevented by inhibition of either� or � secretase, indicating that hypoxic channel up-regulation is depe
pon A�P formation. Our results indicate for the first time that hypoxia promotes A�P formation in central neurons, and show that this le

o abnormally high selective expression of L-type Ca2+ channels whose blockade has previously been shown to be neuroprotective
odels. These findings provide a cellular basis for understanding the increased incidence of AD following prolonged hypoxia.
2005 Elsevier Inc. All rights reserved.
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. Introduction

One major defining feature of Alzheimer’s disease (AD)
s the presence of fibrillar deposits composed primarily of
myloid� peptides (A�Ps), cleavage products derived from
myloid precursor protein (APP) via the sequential action
f �- and�-secretases[1,27]. Whilst our understanding of

he mechanisms underlying the neurodegeneration of AD is
ncomplete, there is compelling evidence that A�Ps are neu-
otoxic elements responsible for the progressive death of neu-
ons[18,27]. The means by which A�Ps exert their toxicity
emains contentious, but a large consensus of opinion indi-
ates that disruption of Ca2+ homeostasis is central to the
ction of A�Ps[17,19].

Cardiorespiratory diseases such as chronic obstructive
ulmonary disease or arrhythmias can lead to a marked reduc-

ion in the O2 supply to the brain, and these conditions are all
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associated with a significant increase in the likelihood o
veloping dementias, particularly AD[11,14,15]. Even more
striking is the increased incidence of AD in patients who h
previously suffered prolonged hypoxic or ischemic episo
arising from a stroke[16,20,21,31].

APP is one of only a few gene products whose expres
is increased following a period of cerebral hypoxia/ische
[14,15]. Since APP (in non-AD patients) is preferentia
cleaved by� secretase to liberate the neuroprotective sol
sAPP�, this increased expression of APP might be con
ered a defence mechanism against ischemia. Howeve
creased APP levels could also permit increased form
of A�Ps via the actions of� and� secretases and, inde
A�P production is increased following both mild and
vere ischemia[12,37]. Thus, evidence for a clear link exis
between hypoxic/ischemic insult and elevation of dama
A�P levels. We have previously demonstrated that prolo
hypoxia enhances the exocytotic response of pheochr
cytoma (PC12) cells to depolarising stimuli, by enha
ing Ca2+ influx, an effect which appeared dependent
197-4580/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
oi:10.1016/j.neurobiolaging.2005.02.002



440 N.J. Webster et al. / Neurobiology of Aging 27 (2006) 439–445

hypoxia-induced increases of A�P production[32,33]. Our
results suggested that hypoxia led to the formation of Ca2+-
permeable membrane channels consisting of A�Ps, as well
as up-regulation of L-type Ca2+ channels[6–8]. However,
these studies were restricted to a clonal cell line, and effects
observed in these cells cannot be extrapolated to account for
effects of hypoxia in central neurones. The present study was,
therefore, conducted to examine the effects of prolonged hy-
poxia on voltage-gated Ca2+ channels in primary cultures of
central neurones, and to investigate any potential role of A�P
formation.

2. Methods

2.1. Culturing of central neurones

All experiments were performed using primary cultures
of rat cerebellar granule neurons. Cells were obtained by
enzymatic and mechanical dissociation as previously de-
scribed[9,25]. This preparation was selected because, al-
though such neurones are resistant to hypoxic insult in vivo,
any neurone is likely to alter protein expression during even
short-term culture. These neurones, however, have the dis-
tinct advantage of expressing the widest variety of voltage-
gated channels known[22,26]. Briefly, cerebellar tissue was
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were held at a potential of−90 mV and depolarised to poten-
tials ranging from−50 to +50 mV. The steps were repeated
every 10 s. Five leak subtraction steps were made prior to
depolarisation to allow off-line removal of linear leak and
residual capacity artefacts. Series resistance compensation
of 80% was routinely employed.

Ca2+ channel antagonists�-conotoxin GVIA (�-CgTx;
Peninsula Laboratories, St. Helens, UK) and nimodipine
(Tocris, Bristol, UK) were made up as stock solutions in
deionised water or DMSO as appropriate and were then
frozen at−20◦C before appropriate dilution in the recording
medium. Experiments using nimodipine were conducted in
the dark due to the light sensitivity of this compound. Ca2+

channel blocking compounds were added to the recording
chamber prior to recording and were present throughout elec-
trophysiological measurement of channel activity. All culture
reagents were obtained from Gibco BRL (UK), except chick
embryo extract which was purchased from Imperial Labora-
tories (UK).

2.3. Analysis of electrophysiological recordings

Current recordings were analysed using the Patch v6.0
program by Cambridge Electronic Design (Cambridge, UK)
following leak subtraction using a P/5 subtraction proto-
col. Further analyses were performed using Microsoft Ex-
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emoved from 6 to 8 day old rat pups and triturated
owing a 15 min trypsin (EC 4.4.21.4, 2.5 mg ml−1 in phos-
hate buffered saline) digestion. Cells, plated at a dens
.25× 106 cells per well on circular 10 mm diameter po
-lysine coated coverslips, were grown in a humidified
osphere containing 5% CO2: 95% air at 37◦C. For cells

xposed to hypoxia, the atmosphere was adjusted to
2, 5% CO2, balance N2 for 24 h prior to experimentatio
he culture medium consisted of minimal essential med
upplemented with 10% horse serum, 2.5% chick em
xtract, 26 mM glucose, 19 mM KCl, 2 mMl-glutamine
enicillin/streptomycin (50 IU ml−1/50�g ml−1) and 80�M
uorodeoxyuridine to prevent proliferation of non-neuro
ells. Culture media were exchanged every 3 days and
ere grown in culture for up to 11 days. All recordings w
ade from cells between days 7 and 11.

.2. Electrophysiological recording of Ca2+ channel
urrents

For recording Ca2+ channel currents patch pipettes w
lled with solution containing (in mM) Cs-HEPES 10
GTA 30, CaCl2 3, MgCl2 2.5, K2ATP 3.25; osmolar

ty 320 mOsmol with sucrose; pH was adjusted to
ith CsOH. Cells were bathed in a solution that co
rised (in mM) tetraethylammonium acetate 70,N-methyl-
-glucamine 70, KOH 3, magnesium acetate 0.6, gluco
arium acetate 10, HEPES 10, and tetrodotoxin 0.0005
.4 with acetic acid; osmolarity 320 mOsmol with sucro
o record Ca2+ channel current–voltage relationships, c
el 2000 and Microcal Origin v6.0. All data are given
ean± standard error of the mean. Student’st-test (unpaired
as used to determine the significance of differences bet

he means, withP values <0.05 being considered significa
ll current recordings were normalized to whole-cell cap

tance to give current density. Peak current was measur
he maximal inward current observed during the depolar
tep. Voltage errors due to series resistance were calc
nd never came to more than−2 to 3 mV. Junction potenti
rror was directly measured as +3 mV. No adjustment

hese errors were therefore made.

.4. Immunocytochemistry

Immunofluorescent labelling with a monoclonal antib
aised against the extracellular N-terminal 5 residues of�P
3D6 antibody[13]) was performed as previously describ
32] with cells plated onto coverslips and subjected to
oxic or other conditions as described above. Cells

xed by immersion in 4% paraformaldehyde in 0.1 M ph
hate buffered saline (PBS; pH 7.4) for 20 min, and
insed thoroughly in several changes of 0.1 M PBS. The
ere then incubated for 20 min at room temperature in
ontaining 10% normal goat serum (NGS) to block non
ific sites and 0.2% Triton X-100 to permeabilse the c
ells were then thoroughly washed again with PBS for
ral changes. The coverslips were then incubated wit
D6 antibody (diluted to 0.5�g/ml in PBS) overnight at 4◦C.
fter two 10 min rinses in PBS, the cells were incubated
h in a 1/200 dilution of Cy2 conjugated anti-mouse
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(Jackson ImmunoResearch). After two further 10 min rinses
in PBS, the coverslips were mounted onto glass microscope
slides with glycerol/PBS and the edges of the coverslips were
sealed with clear nail polish. The cells were examined using
a Zeiss Axioskop epifluorescence microscope using a No. 10
(fluorescein) filter set. Photographs were taken using a Kodak
MDS120 digital camera system.

3. Results

3.1. Hypoxia increases L-type Ca2+ current density in
cerebellar granule neurones

Fig. 1A plots mean current density versus voltage rela-
tionships obtained from cerebellar granule neurones cultured
under normoxic and chronically hypoxic (CH; 2.5% O2, 24 h)
conditions. Clearly, the current densities observed in CH cells
were enhanced as compared with controls, and this effect was
statistically significant (P < 0.05) at test potentials of−10 and
0 mV. No marked change in current kinetics was observed
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(Fig. 1A, inset). Previous studies have indicated that hypoxia
can induce a Ca2+ influx pathway which is insensitive to the
non-selective inhibitor of voltage-gated Ca2+ channels, Cd2+

[7,32]. However, as illustrated inFig. 1B, the residual cur-
rent in the presence of Cd2+ (200�M) was very small and not
significantly different between normoxic and CH cells, indi-
cating that the augmentation of total whole-cell Ca2+ current
was attributable to up-regulation of one or more endogenous
voltage-gated Ca2+ channel types.

Cerebellar granule neurones express multiple types of
voltage-gated Ca2+ channel[22,26]. Since previous studies
had indicated a selective enhancement of L-type (Cav1) Ca2+

channels in PC12 cells by hypoxia[6,7], we explored this
possibility in cerebellar granule neurons.Fig. 2A indicates
that whole-cell Ca2+ currents, recorded in the presence of
2�M nimodipine to block L-type channels, were unaffected
by CH. By contrast, when cells were pretreated with�-CgTx
(1�M) to block N-type (Cav2.2) Ca2+ channels, the effects
of hypoxia were markedly enhanced. The fact that inhibi-
tion of non-L-type channels exaggerated the effects of hy-
poxia, whilst inhibition of L-type channels prevented effects
ig. 1. Hypoxia augments voltage-gated Ca2+ channels in cerebellar granule
eurones. (A) Mean (±S.E.M. bars) current density vs. voltage relationships
btained from neurons cultured under normoxic (�, n = 13 cells) and chron-

cally hypoxic (�, n = 17 cells) conditions. Inset shows superimposed traces
f mean currents, taken from each group of cells at a test potential of 0 mV,
s indicated. (B) Mean (±S.E.M. bars) current density vs. voltage relation-
hips obtained from neurons cultured under normoxic (�, n = 15 cells) and
hronically hypoxic (�, n = 15 cells) conditions in the presence throughout
f 200�M Cd2+. * P < 0.05. Ensemble averaged currents, recorded at the
mV test potential for the same cells are shown on the right.
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ig. 2. Hypoxia selectively augments L-type Ca2+ channels. (A) Mean
±S.E.M. bars) current density vs. voltage relationships obtained from neu-
ons cultured under normoxic (�, n = 12 cells) and chronically hypoxic (�,
= 14 cells) conditions and recorded in the presence throughout of 2�M
imodipine. Inset shows superimposed traces of mean currents, taken from
ach group of cells at a test potential of 0 mV, as indicated. (B) As (A), except

hat cells were pre-treated with 1�M �-CgTx prior to recordings (normoxic;
= 16 cells and chronically hypoxic;n = 17 cells).** P < 0.01,*** P < 0.001.

nset shows superimposed traces of mean currents, taken from each group
f cells at a test potential of 0 mV.
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of hypoxia, indicates strongly that the augmented current den-
sity seen in CH cells is due to a selective enhancement of
L-type channels. Therefore, subsequent electrophysiological
recordings (Fig. 4) were made in cells pretreated with 1�M
�-CgTx.

3.2. Amyloid peptides mediate hypoxic augmentation of
Ca2+ currents

As discussed earlier, previous evidence suggested that at
least some of the effects of CH involve formation of A�Ps. To
investigate their involvement in hypoxic up-regulation of L-
type Ca2+ channels in cerebellar granule neurons, we looked
for immunohistochemical evidence of increased amyloid for-
mation.Fig. 3 shows immunofluorescent images (together
with the corresponding brightfield images) of cell body clus-
ters cultured under normoxic and hypoxic conditions, as indi-
cated. Clearly, as compared with normoxically cultured cells,
those kept under hypoxic conditions showed a marked in-
crease in A�P levels (top row of images). The middle row
of images are taken from cells treated with the dipeptide-
aldehyde, 2-naphthoyl-VF-CHO (�-IV; 3 �M), a cell perme-
able inhibitor of�-secretase activity.�-IV reversibly inhibits
production of both the 1–40 and 1–42 forms of A�P with
ED50 values of 2.6 and 2.7�M respectively[29]. Incubation

of cerebellar granule neurones with 3�M �-IV during 24 h
of hypoxia completely suppressed the increased immunoflu-
orescence observed in CH cells. Similarly, cells were exposed
to 30 nM H-KTEEISEVN-stat-VAEF-OH (�SI), a potent in-
hibitor of �-secretase activity (IC50 30nM [28]). Again, the
increased production of A�Ps caused by hypoxia was fully
prevented. These data indicate that hypoxia can stimulate pro-
duction of A�Ps in central neurons, and this is fully prevented
by inhibition of either� or � secretase.

We next investigated whether any association existed be-
tween hypoxia-induced increased in Ca2+ current density and
hypoxia-induced increases in A�P formation.Fig. 4A shows
that culturing cells under normoxic conditions in the presence
of 3�M �-IV had no effect of Ca2+ current density. However,
this inhibitor fully prevented the augmentation of current den-
sities attributable to chronic hypoxia (Fig. 4B). Similarly, the
� secretase inhibitor,�SI (30 nM), was without effect on cur-
rents in normoxically cultured cells (Fig. 4C), yet fully pre-
vented hypoxic augmentation of currents (Fig. 4D). These
electrophysiological recordings were all made in cells pre-
treated with�-CgTx (1�M) to block N-type channels and
hence highlight the hypoxic up-regulation of L-type channels
(seeFig. 2). Our findings therefore indicate that the functional
up-regulation of L-type Ca2+ channels in cerebellar granule
neurons requires A�P formation.
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ig. 3. Hypoxia augments A�P immunoreactivity in cerebellar granule neurons.
ith bright field images, to the right of each) cultured either normoxically (le

nhibitors (top row) or in the presence of the� secretase inhibitor�-IV (3 �M; mid
hown in the bottom right of the figure indicates 10�m and applies to all panels
Immunofluorescent images of clusters of cerebellar granule cell bodies (together
ft) or under chronically hypoxic conditions (right) in the absence of secretase
dle row) or the� secretase inhibitor,�SI (30 nM; bottom row). Scale bar

.



N.J. Webster et al. / Neurobiology of Aging 27 (2006) 439–445 443

Fig. 4. Inhibition of amyloid formation prevents hypoxic augmentation of Ca2+ currents. (A) Mean (±S.E.M. bars) current density vs. voltage relationships
obtained from neurons cultured under normoxic conditions in the absence (�, n = 8 cells) and presence (©, n = 9 cells) of the� secretase inhibitor�-IV (3 �M).
(B) Mean (±S.E.M. bars) current density vs. voltage relationships obtained from neurons cultured under normoxic (�, n = 37 cells) and hypoxic conditions in
the absence (�, n = 28 cells) or presence (©, n = 33 cells) of the� secretase inhibitor�-IV (3 �M). (C) as (A), except that currents were recorded in the absence
or presence of the� secretase inhibitor,�SI (30 nM,n = 14 cells for each condition). (D) as (B) except that currents were recorded in the absence or presence
of �SI (30 nM, normoxic;n = 33 cells, chronically hypoxic;n = 26 cells, and chronically hypoxic +�S1;n = 28 cells).* P < 0.05,** P < 0.01,*** P < 0.001.

4. Discussion

We have previously shown that chronic hypoxia increases
formation of A�Ps in the clonal cell line, PC12[32] and
in primary cultures of astrocytes[30]. The present study
demonstrates that hypoxia also increases formation of A�Ps
in primary cultures of central neurons, a finding of particu-
lar importance in attempting to understand the mechanisms
underlying the increased incidence of neurodegenerative AD
in individuals who have previously experienced prolonged
hypoxia (see Section1).

Our immunofluorescent studies (Fig. 2) clearly show an
increased immunoreactivity for A�Ps specifically in those
cells cultured under hypoxic conditions. These studies were
performed using the monoclonal antibody, 3D6, which was
originally raised against the N′ terminal 5 residues of A�P
[13]. This antibody is, therefore, capable of also recognizing
the C99 peptide product yielded by the action of� secre-
tase on APP. However, our results would indicate that, in
our preparation, the antibody primarily recognises A�Ps,
since the increased immunoreactivity which was observed
following chronic hypoxia was fully prevented by inhibition
of � secretase as well as� secretase (Fig. 3). Similarly, the
functional consequence, i.e. increased functional expression

of L-type Ca2+ channel (Fig. 4) was also prevented by ei-
ther secretase inhibitor (Fig. 4). Importantly, the use of these
inhibitors provides compelling evidence that formation of
A�Ps is a requisite step mediating the effects of hypoxia
on L-type Ca2+ channels. As such, these findings provide
a direct mechanistic clue to account for the increased inci-
dence of AD in individuals who have previously experienced
prolonged hypoxia.

The effect of hypoxia to up-regulate L-type Ca2+ chan-
nels in cerebellar granule neurons appeared selective, since
blockade of L-type channels with nimodipine prevented any
effects of hypoxia on whole-cell currents, and inhibition of
N-type channels with�-CgTx, which increases the propor-
tion of total current attributable to L-type channels, exagger-
ated the effects of hypoxia. We did not attempt to inhibit P/Q
type channels with�-agatoxin GVIA, since in this prepara-
tion the toxin is not particularly selective[22]. Our evidence
that the amyloid-mediated effect of hypoxia is selective in
its action on L-type channels is also supported by a previ-
ous (albeit indirect) report suggesting that direct exposure
to amyloid peptides up-regulates L-type channels in cortical
neurons[4]. In contrast to PC12 cells, hypoxia did not induce
a Cd2+ insensitive Ca2+ influx pathway in cerebellar granule
neurones. This is consistent with our previous findings that
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exogenous A�Ps do not induce such a pathway in these or
other central neurons[23,24].

In the CNS, L-type Ca2+ channels play key roles in a
diverse range of functions[10], including synaptic plastic-
ity/long term potentiation[2,38], memory and mood[2,34],
and “excitation–transcription coupling”[3]. Thus, alterations
in their functional expression caused by hypoxia are likely to
have important and far-reaching effects. Perhaps more impor-
tantly, it may be through modulation of L-type Ca2+ channel
expression that A�Ps exert a major neurodegenerative effect.
There is a wealth of evidence to suggest that A�Ps disrupt
Ca2+ homeostasis as part of their toxic effect and whilst dis-
ruption of Ca2+ stores has received much attention as a target
system for disruption in AD[17,19], there is compelling ev-
idence that pharmacological blockade of L-type Ca2+ chan-
nels offers protection against the toxicity of A�Ps[5,35,36]
and that A�Ps can up-regulate Ca2+ currents in central neu-
rons[23,24].

In summary, our results demonstrate that prolonged hy-
poxia selectively up-regulates the functional expression of
L-type Ca2+ channels in cerebellar granule neurones. This
effect is dependent on the increased production of amyloid
peptides of Alzheimer’s disease. Given the central role of
these channels in neuronal Ca2+ homeostasis and their in-
volvement in at least some of the toxic effects of amyloid
peptides, these results offer a cellular basis for understanding
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