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THE IMPORTANCE OF THE VARIANCE
AROUND THE MEAN EFFECT SZE
OF ECOLOGICAL PROCESSES
COMMENT

Brian D. Inouyet

The recent paper by Benedetti-Cecchi (2003) makes
the valuable point that the level of variance is an un-
derappreciated ecological parameter that can and ought
to be considered explicitly in experimental designs.
Most experiments ignore the potential for manipulating
levels of variance as atreatment, and some experiments
have unfortunately used treatments that confound
changes in mean effect with changes in the variance
around the mean. This confounding is difficult to avoid
in treatments that manipulate binomial processes, such
as disturbances, because the mean and variance of a
binomial distribution are intimately linked through
shared parameters. However, many experimental treat-
ments applied by ecologists allow orthogonal (inde-
pendent) manipulation of mean effect sizes and the
variance around the mean. | would like to point out
advantages in certain experimental designs that were
neglected in Benedetti-Cecchi’s article. Using regres-
sion-based experimental designs or their multifactorial
counterparts, response surface experimental designs,
will allow ecologists to address the questions of when
variance is likely to be important and the relative im-
portance of changes in variance and in the mean effect
size.

The logical foundation for a regression-based ap-
proach rests on the application of Jensen’s inequality
(Jensen 1906, Smallwood 1996, Ruel and Ayres 1999).
This inequality states that, when f(x) is a monotonic
nonlinear function of x and xis variable, the mean value
of f(x), denoted f(x), does not equal the function eval-
uated for the mean value of x, f(x). The sign of the
inequality depends on whether the nonlinear function
is convex (f(x) > f(X)) or concave (f(x) < f(X)). The
magnitude of the inequality depends on the degree of
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nonlinearity, which can be quantified by the second
derivative of f(x) or through approximations, as in the
scale transition approximation by Chesson et al. (in
press). In other words, when an ecological response
variable is a nonlinear function of the factors being
manipulated in experimental treatments, a determin-
istic component of the importance of variance around
the mean effect size can be predicted from an inves-
tigation of the shape of the relationship between levels
of the treatment factors and the response. When a re-
sponse is linearly related to the level of the treatments,
variance in the mean effect size will not necessarily
have any effect (but see discussion of behavioral re-
sponses to variance below). | still agree that direct ex-
perimental manipulations of variance treatments are es-
sential, but encourage the use of more informative ex-
perimental designs as well.

Experimental designs based on analysis of variance
(ANOVA) can provide powerful tests of hypotheses
and have been responsible for many important con-
ceptual advances in ecology. Benedetti-Cecchi (2003)
concentrates on the use of ANOV A-based experimental
designs as a tool for investigating the importance of
variance around mean effect sizes and only briefly cov-
ersthe use of alternative designsin Appendix B. Using
the proposed factorial experimental design with small
and large mean effect sizes crossed orthogonally with
three levels of variance (Benedetti-Cecchi 2003: Fig.
4), an ANOVA design would allow the researcher to
address the null hypothesis that the level of variance
explains a significant proportion of variance in the re-
sponse, either alone or through interactions with the
mean effect size. Although it allows a test of the sig-
nificance of variance around the mean, the power of
this design is predicated on selection of appropriate
levels of variance in the different variance treatments,
and the ability to infer any pattern in the relative im-
portance of changes in variance and changes in mean
effect size is limited.

| contend that a regression-based experimental de-
sign may allow morerapid progressfor researcherswho
wish to explore the importance of variance in effect
size as well as mean effect sizes. For purposes of il-
lustration, | follow Benedetti-Cecchi’s (2003) lead and
use predator density (x) as the factor manipulated in
the treatments and prey density (f(x)) as the response
of interest. The general principles would of course ap-
ply to any ecological system with a continuous gradient
of densities. Rather than establishing two treatments
with low and high average predator densities, a re-
gression-based approach would establish treatments
that cover awide range of predator densities from zero
to the upper bounds of observed predator densities in
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the field (within the constraints of biological realism
and experimental logistics). Because the goal of the
experiment is to characterize the shape of the relation-
ship between predator and prey densities, an optimal
design will usually allocate fewer replicates to each of
a greater number of treatment levels, and so no more
total effort is necessarily required than for an ANOVA-
based experimental design that uses a smaller number
of predator-density treatments but requires greater rep-
lication of each treatment. Note that in this experi-
mental design variance in predator density within a
treatment (i.e., predator density) is undesirable, even
though the eventual goal may be to evaluate the effects
of such variance. When the object is to characterize
the nonlinearity of the relationship between predator
density and a prey response, variance plays its tradi-
tional role of unwanted noise. Varianceis not, however,
limited to that role.

The relationship between predator and prey densities
from the regression experiment can be fit by either
parametric or nonparametric (i.e., spline [Wegman and
Wright 1983] or quasilikelihood [Burnham and An-
derson 1998]) methods. In either case, we can then
calculate the second derivative of this relationship, al-
though when splines are used, the second derivative
will exist and be continuous only for splines of order
2 or higher. By comparing a plot of the second deriv-
ative f"(x) against predator density, X, and the plot of
f(X) against x, we can observe directly whether variance
in x will deterministically affect f(x), and the range of
predator densities over which variance in the mean ef-
fect size will have the greatest effect. Fig. 1A shows
a hypothetical relationship between predator density
and prey density and Fig. 1B shows the second deriv-
ative of this function against predator density. Because
the effect of changesin predator density on prey density
(f(x)) is convex, Jensen’s inequality states that variance
in x will result in f(x) > f(X). The plot of the second
derivative of this function shows that a given level of
variance in predator density will have a larger effect
on prey densities when the mean predator abundance
islow than when the mean predator abundance is high,
because the relationship’s second derivative is negli-
gible for larger predator abundances.

The existence of a nonlinear relationship between x
and f(x) logically implies that variance around the mean
effect size will affect f(x), but is not the same as an
experimental demonstration of the importance of var-
iance around the mean. Experimental manipulations of
variance, as called for in Benedetti-Cecchi (2003)
should still be attempted. It could also be useful to
apply the regression-based approach before attempting
any direct experimental efforts at demonstrating an ef-
fect of variance in mean effect size. From Fig. 1B it
is obvious that a manipulation of variance in predator
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Fic. 1. (A) A typical monotonic saturating function, f(x)
= 15 — 15x/(3 + X), that may relate predator density and a
prey response; and (B) the second derivative of this function.
Note that the second derivative, f”(x), becomes quite small
while f(x) is still appreciably above its asymptotic value, in-
dicating that the degree of nonlinearity in f(x) is quite small.
Variance in x has a much larger effect on f(x) when the mean
values of x are small and the absolute value of f”(x) is large
than when the mean value of x islarge and the absolute value
of f”(x) is small.

density would have a much larger deterministic effect
at low predator densitiesthan at high predator densities.
Using the design from Fig. 4 in Benedetti-Cecchi
(2003) and the function relating predator and prey den-
sities shown in Fig. 1A, the “‘large variability, small
mean’’ predator treatment shows a 30% increase in the
prey response compared to the ‘‘ constant”” treatment,
whereas the ‘‘large variability, large mean’ treatment
shows only an 18% increase over the ** constant’ treat-
ment. The effect of variance decreases further for even
higher mean predator densities (Table 1). For saturating
nonlinear functions such as this example, experiments
that use designs like Fig. 4 and Fig. 5 in Benedetti-
Cecchi (2003) should be expected to find a significant
interaction between mean effect and variability, and
the absence of a significant interaction would be more
striking than its presence.

An important reason to conduct direct experimental
manipulations of variance, in addition to inferring ef-
fects of variance from nonlinear functions, is that some
species may respond to a variable environment by
changing their behavior or through phenotypic plastic-
ity (Werner and Peacor 2003). This kind of interaction
modification or trait-mediated interaction that is ex-
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TaBLE 1. Effects of mean density and variance.
Mean predator density
Variance 2 4 8
None (0) 7.5 5.0 3.0
Low (3.82) 9.2 (18.6%) 5.6 (10.3%) 3.1 (3.8%)
High (8.73) 10.7 (29.8%) 6.1 (17.9%) 3.3 (8.2%)

Notes: The average prey density, f(x), given the nonlinear relationship in Fig. 1A, depends
on both mean predator density and the variance in predator density. Results are shown as the
expected average prey density, and the percentage change from the no-variance treatment, f(x),
is shown in parentheses. Each treatment consists of a series of 12 predator densities. The series
with means of 2 and 4 are from Benedetti-Cecchi (2003: Fig. 4), except that the ** small mean”
treatments each had a pair of numbers changed to increase the variances from 3.64 and 5.27
to 3.82 and 8.73, in order to match the variances of the orthogonal mean densities. The treat-
ments with a mean density of 8 are low variance (10, 5, 8, 10, 9, 8, 7, 6, 10, 5, 11; variance
= 3.82) and high variance (5, 11, 4, 12, 5, 11, 7, 9, 6, 10, 5, 11; variance = 8.73).

pressed in a variable environment is separate from the
effect of variance predicted by Jensen’s inequality,
which assumes that the underlying nonlinear relation-
ship is stable. Behavioral responses to variation will
be more common for some species than others. If prey
can remember predator densities or respond to unpre-
dictability in predator densities, their behavioral re-
sponses are more likely to reflect effects of variation
in predator densities that are separate from those pre-
dicted by Jensen’s inequality.

Because Jensen’s inequality has been extended to
many cases beyond the original class of monotonic
functions (e.g., by Fink and Jodeit [1990]), this ap-
proach of plotting second derivatives in order to infer
the importance of variance or plan more robust exper-
iments that manipulate variance directly is widely ap-
plicable. My conjecture is that any nonlinear function
f(x) that lacks a point of rotational or translation sym-
metry at the center of mass of the distribution of x
implies that f(x) # f(X). Simple monotonic functions
such as the Michaelis-Menton function in Fig. 1A will
always have a correspondingly monotonic second de-
rivative, but more complex nonlinear functions can
have second derivatives with maximum magnitude at
intermediate values.

The use of second derivatives to predict the impor-
tance of variance around mean effect sizes can also be
extended to experiments that have more than one factor.
In this case, one would use a response-surface exper-
imental design (Inouye 2001) in place of univariate
regression. For example, one may be interested in the
effects of two alternative predators (X, y) on a prey
response. A response-surface experimental design
would use treatments that manipulate the densities of
each of the two predators independently over a range
of appropriate densities for each species. As for the
case with a single predator, either parametric or non-
parametric methods could then be used to fit a surface
that describes the joint effects of the two predators (X,

y) on prey density, f(x, y). Partial second derivatives
of the surface with respect to the two predators would
reveal effects of variance around mean densities in ei-
ther species independently, and the joint derivative
could be used to investigate effects of simultaneous
variance in both predators’ densities and the covariance
in their densities. Given a response surface where f(x,
y) islinear with respect to x but nonlinear with respect
toy, f(x, y) would not be affected by variancein x alone
but would still be affected by both covariance in the
densities of x and y and variance in y. This approach
can of course be extended to higher dimensions, al-
though visualization of the response surfaceis difficult
and experiments to describe the surface require more
effort. While response surface experimental designsare
an efficient way to investigate effects of multiple fac-
tors simultaneously, they can require a large amount
of effort and will not always be logistically feasible.
Although ecologists have recognized the important
roles of temporal and spatial heterogeneity, we have
been slow to appreciate the effect of variance asafactor
distinct from effects of changes in the mean level of
experimental factors. Experiments that manipulate lev-
els of variance while holding the mean effect size con-
stant will be helpful in firmly establishing the signif-
icance of variance in its own right. A wider use of
regression-based and response-surface experimental
designs can help to make qualitative and quantitative
predictions about the importance of variance. Exam-
ining second derivatives of regressions and surfaces
can provide important insights into the conditions un-
der which variance in mean effect size will be more
important and can help guide future experimental work
by ensuring that treatment levels are chosen efficiently.
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THE IMPORTANCE OF THE VARIANCE
AROUND THE MEAN EFFECT S ZE
OF ECOLOGICAL PROCESSES
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Inouye (2005) makes constructive comments on my
paper on the variance of ecological processes (Bene-
detti-Cecchi 2003), drawing attention to empirical and
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mathematical issuesthat | have not addressed explicitly
in my analysis. Inouye (2005) proposes an approach
for investigating the ecological consequences of chang-
ing the variance of a process that combines the power
of regression-based designs with the mathematical
property of monotonic nonlinear functions known as
Jensen’s inequality (Jensen 1906, Ruel and Ayers
1999). The main point isthat, in principle, it ispossible
to examine the effect of the variance of a predictor
variable by characterizing the rel ationship between lev-
els of intensity of this variable and the response var-
iable of interest. If this relationship is a nonlinear
monotonic function, then Jensen’s inequality can be
used to infer the effect of the variance of the process
on the mean value of the response variable, with no
need of manipulating the variance directly.

Since experiments in ecology have focused mainly
on the mean intensity of predictor variables, emphasis
on variance provides a new and exciting slant to ex-
plore linkages between pattern and process. Progress
in this direction relies on the identification of appro-
priate experimental and analytical techniques to deal
with effects of variance and intensity of processes si-
multaneously. | believe that regression-based designs
and Jensen’s inequality, as suggested by Inouye (2005),
provide an important addition to the more explicit ap-
proach of manipulating levels of variance and intensity
of ecological processes directly, as advocated in my
paper (Benedetti-Cecchi 2003). | also believe, however,
that some caution is necessary before using thisindirect
approach for anticipating the consequences of changing
the variance of predictor variables, either in isolation
or concomitantly to changes in mean intensity. Though
valid in principle, the ability of the indirect approach
to provide realistic predictions must be assessed with
respect to (1) the precision and accuracy with which
regression-based designs describe the relationship be-
tween predictor and response variables and (2) the de-
gree to which the mathematical determinism inherent
in Jensen’s inequality retains its predictive capabilities
when confronted with natural variability.

Inouye (2005) makes the valuable point that regres-
sion-based designs are more powerful and informative
than ANOVA-based designs when examining relation-
ships between predictor and response variables.
Though the choice of a particular design should be
dictated primarily by the specific hypothesis under in-
vestigation and by the nature of predictor variables
(e.g., continuous vs. categorical variables), logistical
considerations of costs and efficiency are also impor-
tant. Inouye (2005) asserts that the goal of aregression-
based design isto characterize the rel ationship between
the predictor and the response variables and that this
can be achieved by allocating fewer replicates to a
greater number of experimental levels of the manipu-
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lated factor, compared to what would be done in an
ANOVA-based design. On this basis, Inouye (2005)
contends that the two alternative designs would not
differ in terms of total effort.

Replication plays a central role also in regression-
based designs, especially when these are used as an
indirect method to investigating previously unexplored
relationships between the variance of predictor vari-
ables and the mean response of dependent variables.
The purpose of a regression analysis is to model ex-
pected values of the dependent variable as a function
of one or more predictor variables (Neter et al. 1996).
That is, the fitted values obtained from a regression
model are estimates of the mean values of Y for cor-
responding values of X. If few replicates are allocated
to each experimental treatment, then the precision and
accuracy with which these means are estimated may
be low. Depending on the degree of natural variability,
lack of precision and accuracy may result in a mis-
identification of the relationship between Y and X, im-
pairing the ability of the regression model to adequately
assess the effects of intensity and variance of the pre-
dictor variable. Because estimation of parameters and
associated levels of uncertainty are the foundations of
statistical inference regardless of the specific experi-
mental design adopted (Hilborn and Mangel 1997,
Burnham and Anderson 1998), adequate replication is
necessary both in regression- and ANOVA-based de-
signs.

Armed with these insights, agraphical representation
of the relationship between predictor and response var-
iables should include measures of uncertainty around
estimates of mean values of Y. For example, the rela-
tionship between density of predator and density of
prey from Fig. 1A in Inouye (2005) should incorporate
standard errors around mean values of the dependent
variable. In addition, because the mean and the variance
are usually positively correlated for measures of den-
sity, a realistic representation of the dependence of Y
on X should also depict a decrease in standard error as
the mean density of prey decreases (assuming that the
number of replicatesisthe same acrosstreatments; Fig.
1A). Keeping in mind that empirical studies provide
estimates of unknown parameters and that as such these
estimatesincorporate sampling error, the basic question
is now how does Jensen’s inequality perform in the
presence of natural variability? Furthermore, what is
the effect of a positive correlation between the mean
and the variance in Y on the ability of nonlinear func-
tions to predict the effects of variance in X?

In order to answer these questions, | simulated ex-
periments on interactions between predator and prey
to estimate the effect of Jensen’s inequality using the
nonlinear function from Fig. 1A in Inouye (2005) as
the true underlying model and adding sampling error
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Fic. 1. (A) A representation of the relationship between

density of predator and density of prey from Fig. 1A innouye
(2005) that incorporates variation around estimates of mean
density of prey. The figure depicts a positive relationship
between the mean and the variance of the response variable
(the size of error barsis arbitrary). (B) Box plotsillustrating
the effect of stochastic variation around estimates of mean
density of prey on Jensen’s inequality. Data are from simu-
lated experiments in which the variance of the response var-
iable decreases exponentially with the mean. The specific
form of this relationship is defined by the exponential coef-
ficient, with large negative values allocating most of the var-
iation to the treatment with no predators and less negative
values producing a more gradual decrease in variance across
treatments (as in Fig. 1A). There are 5000 repetitions of the
experiment for each level of heterogeneity of variances. Each
experiment uses the nonlinear function from Fig. 1A in In-
ouye (2005) as the true underlying model and explores the
specific condition of a mean density of two predators per
experimental unit and a variance in density of 3.82 (see Table
1inInouye[2005]). Box plots show the median (dotted lines),
the mean (dashed lines) and the 10th, 25th, 75th, and 90th
percentiles of the distributions.

to estimates of mean density of prey. Variability was
introduced by sampling normal distributions with mean
zero and specified variance. | assumed that the variance
in density of prey decreased exponentially with the
mean. For simplicity, this effect was modeled as an
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exponential decrease in variance with increasing den-
sity of predator. Different levels of heterogeneity of
variances were obtained by repeating the simulations
with exponential coefficients between —1.2 and —0.3.
Large negative values of these coefficients placed most
of the variation around the largest mean value of the
response variable, corresponding to the treatment with
no predators. Less negative coefficients, in contrast,
resulted in a more gradual decrease in variance with
increasing density of predator (as in Fig. 1A). | ex-
amined the effects of a mean density of two predators
per experimental unit and avariance in density of pred-
ators of either 3.82 or 8.73 (see Table 1 in Inouye
[2004]). These values were obtained from two series
of densities of predator, 4, 0, 5,1, 0, 1,0, 1, 5, 1, 4,
2and 3,1,1,0,8,0,0,1,0, 8,0, 2, corresponding to
the low and large variance, respectively. The variance
for the treatment with no predators was set to 20. The
effect of Jensen’s inequality was calculated as the per-
centage change between f(x) (the average density of
prey given the variability in density of predator) and
f(X) (the average density of prey in the absence of var-
iation in density of predator). | ran 5000 simulations
for each level of heterogeneity of variances in density
of prey and each level of variancein density of predator.

It might be noted that the simulated conditions vi-
olated the assumption of homogeneity of variances and
that in real studies action would be taken to mitigate
this problem, usually by transforming the original data
to a new scale. This option, however, may not be ap-
propriate when trying to use Jensen’s inequality to pre-
dict the effects of variance in predictor variables. First,
heterogeneity of variances is a necessary condition for
obtaining unbiased estimates of confidence intervals
and for hypothesis testing, but it is not required for
estimating regression parameters correctly (Neter et al.
1996). Second, transforming the original data may re-
move the non-linearity in the relationship between the
predictor and response variables, preventing the use of
Jensen’s inequality. Finally, heterogeneity of variances
might go undetected if the regression-based design is
poorly replicated. For these reasons, the analyses
shown here assume that the hypothetical experimenter
would do nothing to mitigate the heterogeneity of var-
iances and that he/she would use the regression-based
design only for the purpose of estimation.

The results of the simulations are presented as box
plots (Fig. 1B). Only results for variance in density of
predator of 3.82 are illustrated, as those for variance
of 8.73 showed the same pattern. The simulated ex-
periments consistently estimated the effect of Jensen’s
inequality for large negative values of the exponential
coefficient, with estimates centered on the true value
of the parameter. In contrast, for less negative values
of the exponential coefficient, the distribution of effects
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was skewed towards positive values overestimating the
true value of the parameter. These results show that the
ability of nonlinear monotonic functions to predict the
effect of the variance of ecological processes may be
impaired by natural variation in the response variable.
Jensen’s inequality is likely to overestimate the effect
of variance in the predictor variable if the variance in
the response variable decreases exponentially, though
not abruptly, with the mean.

Should these results deter us from conducting re-
gression-based experiments and applying the poten-
tially useful properties of nonlinear monotonic func-
tions to investigate effects of variance (and intensity)
of predictor variables? My answer is no. This is not
what the results of the simulated experiments suggest.
Rather, they indicate that the indirect approach, like
the more direct one of manipulating variances explic-
itly, should be viewed as a problem of estimation and
not as a deterministic application of a property of non-
linear functions. Hence, the predictions generated by
Jensen’s inequality should be interpreted as empirical
estimates of parameters and not as true effects. Con-
sequently, regression-based experiments should be de-
signed with due attention to the needs of replication
and optimal allocation of resources with respect to the
amount and form of variability in the response variable.
It is not by neglecting the importance of undesired
variation that we will progress in understanding the
effects of variance in ecological processes. Regression-
based designs can be a powerful tool to address this
issue, but their use cannot be advocated at the expenses
of the precision and accuracy with which effects are
estimated.

It should be noted that inferring effects of variance
from nonlinear functions is not the same as examining
these effects by direct experimentation. Inouye (2005)
correctly noted this and discussed how indirect inter-
actions mediated by behavioral responses of prey could
impair the ability of Jensen’'s inequality to correctly
predict the effect of variance in density of predator.
Because most natural systems are variable and unpre-
dictable, it seems premature to rely solely on Jensen’s
inequality to anticipate effects of variance of ecological
processes. Hence, regression- and ANOVA-based de-
signs should be viewed as complementary rather than
as alternative approaches. Regression-based designs
could be used to investigate the form of the relationship
between predictor and response variables in order to
assist the design of subsequent experiments, including
choice of appropriate levels of intensity and variance
of manipulated processes (Inouye 2005). It is the rep-
etition of these experimentsin space and time, however,
that ultimately will establish whether or not the vari-
ance of ecological processes, either in isolation or con-
comitantly to changes in mean intensity, is generally
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important regardless of the complexity and unpredict-
ability of natural systems (Benedetti-Cecchi 2003).

As afinal consideration, it should be noted that there
may be cases where a regression-based design is not
appropriate to investigate relationships between pre-
dictor and response variables because this is not con-
sistent with the ecology of the system under study. For
example, there may be cases where the density of a
predator changes abruptly in space or time due to ep-
isodic events of recruitment and mortality. In these
circumstances it may not be appropriate to establish an
experimental gradient of densities of the predator sim-
ply because such a gradient does not occur under nat-
ural conditions. More generally, the choice of the ex-
perimental levels of fixed effects, like those considered
in the present discussion, is dictated by the particular
hypothesis under investigation. The nature of the ex-
perimental design should reflect the specific question
of interest (Underwood 1997).

Recognizing the importance of the variance around
the mean effect-size of predictor variables and the pos-
sibility that effects of variance change with mean in-
tensity provide new avenues for investigating cause-
and-effect relationships in ecology (Benedetti-Cecchi
2003). A limited, albeit growing body of literature in-
dicates that spatial or temporal variance of predictor
variables such as density of consumers (Butler 1989,
Ruel and Ayers 1999, Benedetti-Cecchi 2000), irra-
diance (Ruel and Ayers 1999), heterogeneity of the
substratum (Cardinale et al. 2002) and concentration
of nutrients (Hutchings et al. 2003), can elicit strong
responses in dependent variables. The extent to which
these effects can be predicted by Jensen's inequality
and whether they are specific to a narrow range of
ecological processes or reflect a pervasive feature of
ecological systemsisfar from clear. Asitis commonly
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the case in science, progress in understanding will re-
quire the judicious combination of existing techniques
with novel methodologiesthat are specifically designed
to address the problem of concern.
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