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abstract: Researchers have suggested fluctuating asymmetry (FA)
as an indicator of environmental stress and have usually tested this
assertion by examining relations between FA of single traits and stress.
Fluctuating asymmetry stress relations are real but are typically weak
and difficult to detect. Researchers would like to maximize the prob-
ability of detecting FA-stress relations when they exist. We assert that
analyses based on the FA of multiple traits may provide better meth-
ods for detecting stress. In this article, we used computer simulations
to compare the ability of six analyses to detect differences in FA
between stressed and unstressed populations. We show that the op-
timal analysis depends upon the underlying form of the FA distri-
butions. We also show that two of the analyses had inflated Type I
errors in some situations. Finally, we quantify the advantage of our
preferred analysis over those of single-trait FA in detecting stress.

Keywords: bioindicator, composite fluctuating asymmetry, power,
stress.

Applied biologists are interested in monitoring environ-
mental stress, preferably before stress irreversibly damages
populations (Clarke 1993a; Bunn 1995). Researchers have
used changes in the biota to indicate stress (i.e., bioin-
dicators). While a variety of bioindicators exist, fluctuating
asymmetry (FA) has received increasing attention in the
last decade. Most organisms have one or more axes of
symmetry about which the body is, basically, a reflection.
Most individuals are not exactly symmetrical but differ
slightly in the realization of these repeated structures. Fluc-
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tuating asymmetry refers to these directionally random,
subtle departures from perfect symmetry and is hypoth-
esized to indicate the inability of an organism to maintain
precise development (Palmer and Strobeck 1986).

Fluctuating asymmetry variance of populations and ab-
solute FA values of individuals has been found to increase
with stress (reviewed in Leung and Forbes 1996). One
possible mechanism of relations between FA and stress is
that organisms require energy to compensate for stress.
This should reduce energy for growth and reproduction
(Koehn and Bayne 1989), which may eventually influence
populations. Stress may also reduce the energy available
to maintain developmental precision (Sommer 1996).
Thus, FA should increase with stress. Fluctuating asym-
metry could provide advantages over other bioindicators
of stress because FA is cost-effective and easy to measure
(Clarke 1993a). Also, FA has been related to quality of
organisms; therefore a change in FA should be biologically
relevant (Sommer 1996). However, empirical relations be-
tween FA based on single traits and stress are, on average,
weak and heterogeneous (Leung and Forbes 1996). Fur-
ther, we would predict that relations between FA and stress
should be weak, based on mathematical algorithms gen-
erating FA (Leung and Forbes 1997). Thus, if researchers
are serious about using FA as a bioindicator of stress,
methods must be found to increase the reliability of FA
to detect stress.

Previous analyses and mathematical models have usually
considered FA based on single paired traits. Analyses that
combine information across traits should prove to be more
reliable detectors of stress (Leary and Allendorf 1989; Wat-
son and Thornhill 1994). No study has quantitatively com-
pared the efficacy or the validity of such analyses, although
some composite indices of FA (CFAs) have been used in
empirical studies (e.g., Whitlock 1993; Dufour and Weath-
erhead 1996; Manning and Ockenden 1994) and other
analyses have been suggested (Palmer 1994; Zhivotovsky
1992). Of those studies that have used a CFA measure, the
strengths and directions of FA relations for single traits
are not typically reported (with the exception of Manning
and Ockenden 1994), and different CFA analyses are not
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typically used on the same data sets. For convenience, we
will refer to analyses combining information on FA dis-
tributions across traits as CFA analyses.

In this article, we examine properties of CFA analyses
using simulations. In a simulation study, we can work with
a model for FA whose properties are known and ask how
much information about the model can be recovered from
various measures of FA. Furthermore, we can isolate and
study a number of factors that could affect the relative
efficacy of CFA analyses, such as the strength of FA-stress
relations, the magnitude of measurement error, the vari-
ance in developmental stability of different traits, and the
deviation from normality. The objective of this study is to
help researchers decide which CFA analysis should be used,
given different patterns of FA distributions. We determine
which analyses are valid, in terms of the probability of
concluding that FA of two samples differ when samples
come from identical FA distributions (i.e., Type I error
rates), and which analyses provide the greatest probability
of detecting relations when FA differs between two pop-
ulations (i.e., power).

Composite Fluctuating Asymmetry Analyses

We consider six analyses of fluctuating asymmetry across
multiple traits, which we refer to as CFA analyses. These
are defined below and summarized in appendix A. All of
the first three methods involve calculation of a single index
of FA across traits, which are then analyzed by a simple
t-test. The last three methods are multivariate analyses and
do not involve calculation of a simple index of FA.

The first composite statistic (CFA 1) is the sum (or
mean) of absolute FA values (FFAF) for all traits for each
individual (e.g., Clarke and McKenzie 1992; Whitlock
1993). Absolute FA values are used because FA of indi-
viduals should be directionally random, and it is the mag-
nitude of asymmetry in either direction that may indicate
stress. This statistic is simple to calculate, but traits with
higher FA magnitudes would be weighted more heavily
than more developmentally stable traits. Some researchers
have standardized FA by the mean size of the trait in each
individual (e.g., Thornhill et al. 1995) or the average trait
size of the population (Palmer and Strobeck 1986) before
calculating CFA 1. This would be appropriate to control
for size differences when FA magnitude across traits scales
positively and isometrically to trait size. However, this
would not necessarily control for differences in develop-
mental stability across traits. We do not model or consider
allometric relations in this manuscript (but see Leung
1998).

Another way to standardize FA magnitudes of traits is
to divide each FA value by the average FFAF of a given
trait in the populations of interest such that all traits con-

tribute equally to CFA measure and then to sum FFAF
values across traits for each individual such that each in-
dividual has a composite FA score. This is our second
composite index of FA (CFA 2). To our knowledge, CFA
2 has not been applied before. We consider CFA 2 because
traits are likely to differ in their developmental stability
and because the relationship between the magnitude of
developmental stability and the ability to index stress is
unclear (Leung and Forbes 1997). Another method of
standardizing FA magnitudes across traits is to rank FFAF
values of individuals for each trait and then to sum the
ranks for each individual such that each individual has a
composite FA score (e.g., Zakharov et al. 1991; Dufour
and Weatherhead 1996). This summed, ranked measure
is our third composite index of FA (CFA 3). Each of these
three CFA indices can then be analyzed by a t-test, as we
do in our simulations, or by an ANOVA if there are more
than two samples of individuals to compare.

The fourth analysis (CFA 4), uses standardized, gen-
eralized variance to quantify asymmetry (Zhivotovsky
1992). To calculate this, first a variance-covariance matrix
consisting of all traits is generated for each population (the
main diagonal is the variance associated with each trait;
the nondiagonal elements are the covariances between
traits). Then the determinant of the matrix is taken, mod-
ified according to the number of traits measured, and
multiplied by a coefficient (G) to produce an overall var-
iance score for a population (see app. A). The result: var-
iances of two populations can be compared using an F-
ratio test. Detailed formulas and equations are given by
Zhivotovsky (1992). This index, called “generalized FA
variance” (GFA) by Zhivotovsky (1992), has the advantage
of statistically pooling information across characters, thus
taking into account correlations between signed asym-
metries. GFA also has the advantage of increasing degrees
of freedom, which are a function of both sample size and
of number of traits examined. However, GFA indices are
not available on many statistical packages, and tables of
values are not comprehensive (see tables by Zhivotovsky
1992). Palmer (1994), noting the complexity of GFA, sug-
gested two-way ANOVAs as an alternative, with population
(stressed vs. unstressed) and traits as independent variables
and FFAF as the dependent variable. This is our fifth com-
posite index of FA (CFA 5). We note that two-way
ANOVAs are typically analyzed using two-tailed testing.
However, we had a priori predictions with respect to the
direction of relations. Thus, we adjusted the critical value
and only considered significance if the relation was in the
predicted direction (similar to Rice and Gaines [1994]
except that we only considered significance in the predicted
direction).

MANOVA has also been used to integrate information
across traits and to determine differences in FFAF between
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samples (e.g., Alados et al. 1993; Clarke 1993b). This is
our sixth composite index of FA (CFA 6). In this study,
we used Wilks’s Lambda (L) as our test statistic and con-
verted L into the F-statistic following Lindeman et al.
(1980).

All statistics generated by our computer programs were
verified by comparing output from several simulations
with output generated by STATISTICA statistical package
(Statsoft 1993). Fluctuating asymmetry differences be-
tween samples for single traits were determined by com-
paring variances using Levene’s test (i.e., t-test on absolute
FA values as suggested by Palmer and Strobeck [1992]).

Model

Baseline Simulations

We began by generating FA values using a baseline model
that was defined as follows: the underlying distribution of
FA values was normal, centered at 0, with variance ( ),2jp, t

where the subscripts p and t denote population and trait,
respectively. Populations and refer to the un-p = 1 p = 2
stressed and stressed populations, respectively. This dis-
tribution conforms to typical views of FA (Palmer and
Strobeck 1986). Furthermore, FA values were independent
between traits, measurement error (ME) was not consid-
ered at this point, and the underlying distributions of FA
values were identical for all traits. For our baseline sim-
ulations, we used 10 traits (k) and a sample size (N) of
40. Subsequently, we modified the baseline model, altering
parameters. We used “conditions” as a convenient term
to refer to the patterns and parameter sets that we mod-
eled. For each condition, we examined a number of levels;
for example, we examined three levels of measurement
error.

We analyzed FA difference between populations using
the six CFA analyses described above. We used the ratio
of variances between populations as a convenient measure
of the effect size ( ), where E refers to the effect2 2E = j /j2, t 1, t

size and and refer to the population variances of2 2j j2, t 1, t

the putatively stressed and unstressed populations, re-
spectively. We considered . WhenE = 1, 1.2, and 1.5 E =

, the two FA distributions are identical (i.e., there is no1
stress). Here, significant differences between stressed and
unstressed samples are due to Type I errors. For the other
two E values, differences in the percentage of significant
analyses reflect differences in power. These E values offer
a range of strengths of FA-stress relations. To determine
Type I error rates and power, we ran 1,000 simulations
for each set of parameter values.

We found that Type I error rates were as predicted
( ) for all CFA analyses when no differences in FAa = 0.05
variance existed between populations ( ; fig. 1a; app.E = 1

B). Thus, all CFA indices could be used validly under these
baseline conditions. Power was dramatically improved us-
ing CFA analyses compared to single traits; at times it was
as much as four times as great (fig. 1c; app. B). CFAs 1,
2, and 5 yielded very similar power. These analyses could
provide marginally greater power than CFA 3 and CFA 4
analyses (10%–15%). CFA 6 could be as much as 50% less
powerful than the other analyses (fig. 1c; app. B).

Heterogeneous FA Distributions between Traits

In nature, we might expect the magnitude of FA values to
differ between traits. Traits under strong directional se-
lection may have a high FA variance compared to other
morphological traits, whereas traits whose asymmetry af-
fects their importance may have lower FA variances. For
example, Møller and Höglund (1991) found that sexually
selected traits had average FA values an order of magnitude
greater than other morphological traits. Gummer and
Brigham (1995) found that FA variance in bat wings were
about twice as large as variance in tibias. Clearly, FA can
differ appreciably between traits. We considered the fol-
lowing five levels of heterogeneity across our 10 traits: In
level 1, variances of traits 1–5 were three times the variance
of traits 6–10, traits 1–5 were homogeneous, and traits
6–10 were homogeneous (i.e., ). In level2 2j = 3 # j1, 1–5 1, 6–10

2, variance of one trait was three times the variance of the
other traits; the other traits were homogeneous. In level
3, variances of traits 4–6 were three times the variance of
traits 1–3, variances of traits 7–10 were 10 times the var-
iance of traits 1–3, and traits 1–3, 4–6, and 7–10 were
homogeneous. In level 4, variances of traits 1–5 were 10
times the variance of traits 6–10, traits 1–5 were homo-
geneous, and traits 6–10 were homogeneous. Finally, in
level 5, variance of one trait was 10 times the variance of
the other traits, the other traits were homogeneous, and
other parameters were as for the baseline simulations. Val-
ues of E were homogeneous between traits.

As with the baseline simulations, we found that Type I
error rates were as predicted (at ) for all analysesa = 0.05
(fig. 1b; app. B) and that CFA analyses provided much
greater power than analyses using single traits. Once again,
CFAs 1, 2, and 5 were the most powerful analyses and
CFA 6 the weakest (fig. 1d; app. B). In contrast, however,
we found that CFA 2 could be marginally more powerful
than CFAs 1 and 5, yielding as much as 10% more power
depending on the magnitude and nature of the hetero-
geneity (fig. 1d; app. B).

Leptokurtism

Leptokurtic distributions occur when more data points fall
in the center and at the tails of a distribution as compared
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Figure 1: Type I error rates ( , panels a and b) and power ( , panels c and d) for six CFA analyses. Analyses using single traits (ST) wereE = 1 E = 1.5
shown under different conditions. The conditions were baseline (panels a and c) and FA distributions heterogeneous between traits (panels b and
d). Baseline conditions were that the underlying FA distributions of all traits were normally distributed, centered at 0, uncorrelated, without
measurement error, and homogeneous between traits. We used 40 individuals and 10 traits for the baseline simulations. For the other conditions,
we modified one property of the model and maintained baseline properties for the rest of the model. We presented one level of heterogeneity
between traits (level 5; see app. B and text). CFA analyses are described in appendix A.

to a normal distribution (Zar 1984). Leptokurtic FA dis-
tributions may reflect a composite of many heterogeneous
FA distributions (Houle 1997), which can arise due to
differences in developmental stability between individuals
(Leung and Forbes 1997). Thus, we considered FA vari-
ances that were heterogeneous between traits. Again, E
values were as for baseline conditions. We considered three
levels of kurtosis. The first level, , ranged from 1 to 3.2j1, t

The second level, , ranged from 1 to 10. And the third2j1, t

level, , ranged from 1 to 100. Levels 1–3 produced av-2j1, t

erage kurtosis values (g) of approximately , 2.9, andg = 0.7
7.6, respectively. Ranges of could be calculated from2j2, t

.2E # j1,t

We found that CFA 4 had inflated Type I errors that
could be as high as 34% when (top panel of fig.g = 7.6
2; app. B). Thus, we did not consider the power of CFA
4 for leptokurtic FA distributions. The other analyses had
predicted levels of Type I errors. It appeared as though
the power of both analyses using single traits and CFAs
decreased as kurtosis increased. However, it is unknown
whether this was a function of kurtosis per se or whether

it was due to the additional component of variation. The
most powerful CFA analysis depended on the level of kur-
tosis. When kurtosis was low, CFAs 1, 2, and 5 provided
the most powerful analyses. When kurtosis was high, CFA
3 provided the most powerful analysis and could yield up
to 25% more power than the other CFA indices (bottom
panel of fig. 2; app. B). When kurtosis was high, CFA 2
provided marginally greater power than CFA 1.

Correlations of FA Values between Traits

If there is a component of developmental stability that is
organism-wide, then we would expect weak concordance
among FA values of traits, albeit typically nonsignificant
(see Leung and Forbes 1997 for reasoning as to why FA
concordance should be weak). Further, we would expect
FFAF values but not necessarily signed FA values to be
concordant. We modeled this by defining as being2jp, t

composed of two variances ( ), where2 2 2j = V1 1 V2p, t p, t p, t

represents the portion of that is uncorrelated2 2V1 jp, t p, t

between traits within individuals and represents a2V2p, t
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Figure 2: Type I error rates ( ) and power ( ) for six CFAE = 1 E = 1.5
analyses and analyses using single traits (ST) were shown for three levels
of kurtosis (g). Type I error rates were inflated for CFA 4, thus power
of CFA 4 was not considered ( ). These levels cor-NA = not applicable
responded to levels 1–3 in the text and appendix B. CFA analyses are
described in appendix A.

Figure 3: Type I error rates ( ) and power ( ) for six CFAE = 1 E = 1.5
analyses and analyses using single traits (ST) were shown for three levels
of correlations between FA values of traits (r). Type I error rates were
inflated for CFA 4 and 5, thus power of CFA 4 and 5 were not considered
( ). These levels corresponded to levels 1–3 in theNA = not applicable
text and in appendix B. CFA analyses are described in appendix A.

component of that is, common between traits. Absolute2jp, t

values comprising were correlated but were direc-2V2p, t

tionally random such that signed FA values would not be
correlated but FFAF would. The common component (C)
of could be expressed as a proportion of the total2jp, t

variance (i.e., ). The underlying distribution2 2C = V2 /jp, t p, t

from which FA values were chosen was homogeneous be-
tween individuals and traits within populations.

We examined three levels: , , andC = 0.091 C = 0.23
. All three corresponded to average FA-FA cor-C = 0.33

relations of , , and , respec-r = 0.0052 r = 0.039 r = 0.085
tively. Thus, we modeled very weak concordance between
traits.

We found that CFA 4 and CFA 5 yield inflated Type I
error rates when FFAsF were concordant across traits (top
panel of fig. 3; app. B). Thus, the power of these CFA
analyses was not considered when FA values were con-

cordant between traits. We found that the power of the
other CFA analyses declined as the magnitude of FA-FA
concordance increased. However, the relative positioning
of these CFA analyses did not change from baseline con-
ditions, with CFA 1 and CFA 2 yielding the greatest power
(bottom panel of fig. 3; app. B).

Measurement Error

Measurement error reduces the ability of FA to detect stress
(Palmer 1994). It is unknown what effect measurement
error should have on the relative efficacy of different CFA
analyses. Similar to the above simulations, we modeled

to be composed of two variances ( ),2 2 2 2j j = V1 1 Vp, t p, t p, t ME

where is the variation due to measurement error. The2VME

degree of measurement error (ME) could be expressed as
a proportion of (i.e., ).2 2 2j ME = V /j1, t ME 1,t
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We examined three levels: , , andME = 0.091 ME = 0.23
. Stressed and unstressed populations experi-ME = 0.33

enced the same value of .2VME

Not surprisingly, the power to detect differences be-
tween traits decreased with increasing ME. However, Type
I errors and relative positioning of CFA analyses in terms
of power remained unchanged compared to the baseline
simulations. These results are presented only in appendix
B.

Number of Traits and Sample Size

The number of traits (k) combined into a CFA measure
and the sample size (N) both would affect the power of
a CFA analysis to detect stress. However, it is unknown
whether these factors influence the relative efficacy of dif-
ferent CFA analyses. Thus, we examined different values
of k and N. We used ( ), ( ), andN = 40 k = 5 N = 80 k = 10

( ) as three separate sets of simulations. WhenN = 20 k = 5
, we set because it was not possible to useN = 20 k = 5

CFA 4 with and (with 10 individuals in eachN = 20 k = 10
of the stressed and unstressed populations and 10 traits,
we would have 0 degrees of freedom).

As for the baseline simulations, Type I errors were as
predicted ( ) for all CFA analyses and CFAs 1, 2,a = 0.05
and 5 provided the greatest power. These results are pre-
sented only in appendix B.

Discussion

Fluctuating asymmetry could potentially offer several ad-
vantages as a bioindicator of environmental stress (Clarke
1993a), provided FA is used and interpreted correctly. Re-
searchers argue that FA should be higher in a stressed
population than in a relatively unstressed one and that
elevated FA indicates the presence of stress. Therefore, it
is critical that methods of analyzing FA do not falsely
indicate differences in FA between populations beyond
predicted Type I error rates, while simultaneously maxi-
mizing the power or the probability of detecting differ-
ences in FA when they exist. In the sections that follow,
we present recommendations concerning how FA should
be analyzed and reasons for the advantages/disadvantages
of different analyses.

Recommendations

CFA analyses typically provided much greater power than
analyses based on single traits. For example, CFA 2 could
detect differences in FA among populations 85% of the
time compared to only 20% using FA of single traits. In
fact, to obtain the same power of CFA 2, we would require
a sample size of with analyses using single traits, where∗k N

N is the sample size using CFA 2 and k is the number of
traits combined (reason detailed below). Thus, CFA anal-
yses should be preferred over analyses that use single traits
(for qualitative arguments, see Leary and Allendorf 1989
and Watson and Thornhill 1994).

However, not all CFA analyses were equally useful. We
suggest that researchers analyze data using standardized,
summed FA values across traits (i.e., CFA 2 and CFA 3,
depending on the level of kurtosis). Both parametric anal-
yses (CFA 2) and nonparametric, ranked analyses (CFA 3)
have predicted Type I error rates and yield the greatest
power. For normal FA distributions that were heteroge-
neous between traits and for slightly leptokurtic FA dis-
tributions, CFA 2 provided the greatest power (although
the difference in power between CFAs 1, 2, and 5 was !

10%). The power of CFA 2 was essentially identical to CFA
1 (unstandardized, summed FA values across traits) and
CFA 5 (two-way ANOVAs) when FA distributions were
homogeneous between traits. We expect, however, that FA
distributions would not typically be identical between
traits in nature.

If FA distributions are leptokurtic, we suggest either CFA
2 or CFA 3. For low kurtosis values, CFA 2 was approx-
imately 15% more powerful than CFA 3, whereas, for high
kurtosis values, CFA 3 was approximately 25% more pow-
erful than CFA 2. Our results are consistent with those of
Gangestad and Thornhill (1998) in that CFA 2 yielded
predicted Type I error rates regardless of the degree of
kurtosis. Further, CFA 2 was more powerful than CFA 3
when the signed FA distribution was normal, even though
the FFAF distribution on which analysis was conducted
theoretically would be nonnormal. However, our results
differ from Gangestad and Thornhill (1998) in that CFA
3 (a nonparametric measure of FA) provided much greater
power as the degree of nonnormality of the signed FA
distribution increased.

The obvious question, of course, is, What constitutes
high versus low kurtosis? Unfortunately, the answer is not
as simple as whether or not the FA distributions are sig-
nificantly leptokurtic. The point at which CFA 3 becomes
more powerful than CFA 2 is a function of sample size
and of effect size; thus, it is impossible to give a precise
kurtosis value at which CFA 3 should be used. Neverthe-
less, we present tables of kurtosis values based on com-
puter simulations at which CFA 3 becomes more powerful
that examine a range of sample sizes (N), effect sizes (E),
and number of traits combined (k; app. C). We note that
there is a great deal of overlap in terms of which index
should be most powerful at intermediate levels of kurtosis
(fig. C1 in app. C).

The other CFA analyses (4–6) were flawed. Specifically,
CFA 4 (GFA) yielded inflated Type I errors when signed
FA distributions were leptokurtic (cf. Monte Carlo sim-
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ulations by Zhivotovsky [1988]) and when FFAF values
were related between traits. Further, CFA 4 was much more
difficult to calculate and was not amenable to most sta-
tistical packages. Similarly, CFA 5 (two-way ANOVAs)
yielded inflated Type I errors when FFAF values were re-
lated between traits. For example, there was a 12% Type
I error rate using CFA 5 when the average correlation was
only and typically nonsignificant (correspondingr = 0.085
to or only 0.7% of the variation explained).2r = 0.007
Thus, researchers could not use significance as an indi-
cation as to when relations between FFAF values of dif-
ferent traits would be a problem. While CFA 6 (MANOVA)
had predicted Type I error rates, its power was considerably
less than the other CFA indices (we could detect differences
in FA between populations 50% more often by using CFA
2 than by using CFA 6).

Mechanisms of Relative Benefits of CFA Indices
Compared to Single Traits

The mechanisms underlying relative benefits of GFA, two-
way ANOVAs, and MANOVA are clear. Both GFA and
two-way ANOVAs reduce the standard error by increasing
the effective sample size and the degrees of freedom (Zhi-
votovsky 1992 and Palmer 1994, respectively). MANOVA
estimates coefficients associated with each trait FA such
that the maximal amount of variation is explained (Lin-
deman et al. 1980). The reasons why analyses using CFAs
1–3 are more powerful are perhaps less clear.

As above, CFAs 1–3 also act to reduce the standard error.
The FFAF of each trait of each individual comes from a
distribution of FFAF values from which one value is cho-
sen. As more traits are measured, the standard error
around the mean FFAF across all traits for a given indi-
vidual would decrease relative to mean FFAF, following
the central limit theorem (Zar 1984). This resulted in re-
duced standard error in a population. Thus, we would
have an increased probability of detecting differences be-
tween populations if FFAF values of individuals in one
population were generally greater than those in another
population (as we would predict to occur due to stress).

Specifically, in the absence of FA-FA correlations, the
standard error would be reduced by approximately a factor
of (k)0.5, where k is the number of traits combined. Thus,
using single traits, we would require an average sample
size of to obtain the same power as analyses using∗k N
CFA 2. Of course, the advantage of combining traits de-
creases as the degree of correlation between traits increases;
for perfect correlation between traits, analyses using CFA
2 would provide no advantage over single traits.

Comparison of CFA Indices: Mechanisms of Differences
in Power and Validity

All five CFAs had similar power under baseline conditions
because all of them acted to reduce the standard error
(although not with the same efficiency). The difference in
power between CFA 2 and CFA 3 reflected the difference
between parametric versus nonparametric CFA measures;
these differences in power depended on the degree of non-
normality (app. C). When FAs were heterogeneous be-
tween traits, a higher power of CFA 2 than of CFAs 1 and
5 occurred because CFAs 1 and 5 would implicitly weight
asymmetric traits more heavily than less asymmetric traits.
To illustrate the potential consequences of heterogeneity,
consider a trait whose FA variance was an order of mag-
nitude larger than other traits (e.g., Møller and Höglund
1991). CFAs 1 and 5 would primarily reflect this one trait.
Thus, the standard error would primarily reflect a single
trait rather than being optimally reduced by taking the
standardized average of many traits. Not surprisingly, CFAs
1, 2, and 5 were essentially identical when FA distributions
were homogeneous between traits. In such cases, traits
would be weighted approximately equally using these anal-
yses. We note that CFAs 1 and 5 could potentially be equal
to or stronger than CFA 2 if highly asymmetric traits were
consistently more strongly affected by stress.

As noted above, CFA 5 treated traits as independent
data points and therefore had inflated Type I errors when
FFAF values of traits were correlated. GFA was also sen-
sitive to correlations of unsigned asymmetries. Although
GFA takes into account signed asymmetries and hence may
not be biased by developmentally linked traits, unsigned
asymmetries may be correlated without signed asymme-
tries being correlated. Hence, GFA could be biased by slight
concordance among traits (albeit typically nonsignificant)
due to some organism-wide component of developmental
stability or quality (Leung and Forbes 1997).

MANOVA was typically the weakest index. This was
because a separate parameter needed to be estimated for
each trait. Thus, more variability needed to be explained
to find significance. In contrast, CFA 2 increased in power
following the central limit theorem but did not concur-
rently require additional variation to be explained in order
to find significance. MANOVA also had to be two tailed,
since each trait had a parameter estimate that could be in
either direction, whereas the other analyses could be an-
alyzed using one-tailed testing. Although there are situa-
tions in which two-tailed testing would be appropriate,
MANOVA would still be the weakest index.

Researchers may also ask whether single traits can some-
times be more reliable than CFA indices. If the effect sizes
of FA-stress relations are heterogeneous, this is certainly
possible. CFA 2 would be more powerful, typically, than
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the average of single traits. However, CFA 2 may be a
combination of both strong and weak FA relations. Weak
FA relations would act like random noise and could result
in a weaker CFA index compared to reliable single traits.
However, two problems would be associated with using
reliable single traits. First, consideration of multiple in-
dividual traits would require some correction for multiple
tests and would therefore result in reduced power (e.g.,
sequential Bonferonni, Palmer 1994). Second, it is un-
known which trait would be most reliable. Thus, a priori
testing would be required to find such traits without caus-
ing inflated Type I error rates. Further, if there were a
priori reasons for expecting one trait to be more reliable
than another, it could be possible to weight CFA 2 values
by the estimated reliability of individual traits (e.g., taking
into account measurement error). However, one caution-
ary note regarding such weighting procedures is that in-
appropriate weighting would weaken CFA 2 indices. In
such instances, CFA 2 would reflect some traits more than
others; hence reduction in standard error due to taking
averages would not be as great. Thus, while weighting may
provide advantages even over CFA 2, optimal methods of
weighting have yet to be determined.

Finally, we note that the CFA indices discussed here are
not the only methods possible for combining information
across traits. Repeated measures of ANOVA treating traits
as the repeated measure or a nested ANOVA with indi-
viduals nested within groups should yield similar results
to CFA 1. In fact, these tests turn out to be mathematically
similar, and the degrees of freedom reflect the number of
individuals rather than the number of traits by individuals
(i.e., no pseudoreplication). These tests may offer the ad-
vantage of allowing for tests of interactions between stress
and traits. However, consideration of such issues as com-
pound symmetry (or sphericity) may be required. Further,
if the main consideration is to determine whether a pu-
tatively stressed sample has higher FA than an unstressed
sample (as typically appears to be the case), then CFAs
1–3 offer the most powerful and simplest tests, whereas
analyses using repeated measures or nested designs could
quickly become complicated.

FA-Quality Relations within Samples

This study dealt exclusively with detection of FA differ-
ences between samples. However, many studies examine

relations between FA and some measure of quality (e.g.,
mating success) within studies. The logic underlying the
findings of this article extends to tests of FA-quality re-
lations. Further, although single traits sometimes relate
significantly to quality, FA-quality distributions within
samples should typically show a triangular-bivariate dis-
tribution, and FA of single traits may only be predictive
of quality at high FA values (see arguments by Leung and
Forbes [1997]; but cf. Rowe et al. 1997 for antisymmetry-
quality distributions). However, with composite measures,
symmetry need not be the common phenotype, due to the
central limit theorem, and FA can potentially be predictive
of quality over the entire range of FA values.

Summary

It may be possible to use FA to monitor stress. However,
current methods of analyses usually employ FA of single
traits and appear to be weak and unreliable. If FA is to be
used, it is essential to maximize the reliability of FA as a
monitor of stress. Composite measures of FA can provide
vast advantages over single traits in terms of the probability
of detecting FA differences between populations. However,
different methods of CFA analyses differ both in their
validity (Type I error rates) and in their power, and it is
critical to determine which CFA analyses should be used.
In this study, we demonstrated that the most powerful,
simplest, and robust CFA analyses are simply t-tests using
standardized, summed FA values. When kurtosis is low,
parametric, summed FA values provide the greatest power
(CFA 2). When kurtosis is high, nonparametric, summed,
ranked FA values provide the greatest power (CFA 3).
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APPENDIX A

Table A1: Composite FA analyses (CFA)

Index Equation Description

CFA 1 CFAi = FFAijF j = 1 to k Summation of absolute FA values across traits (j) for each individual (i).
CFA and FA denote composite asymmetry values for an individual
and asymmetry for each trait, respectively.

CFA 2 CFAi = FFAijF/avgFFAjF j = 1 to k Summation of standardized absolute FA values. FA values of a given trait
are first divided by the average absolute FA magnitude for that trait.
Thus, FA values of all traits are given equal weight.

CFA 3 CFAi = rankedFFAijF j = 1 to k FA values of individuals are ranked for each trait. Thus, FA is standard-
ized across traits. The ranked values of each trait of an individual are
summed to give a CFA value for that individual (i).

CFA 4 (det S)1/k∗GFA = G Generalized FA variance, where G is a coefficient that eliminates statisti-
cal bias, det S is the determinant of the variance-covariance matrix of
FAs of different traits. GFAs of stressed versus unstressed populations
can be compared using F-ratio test. Zhivotovsky (1992) provides nec-
essary matrix notation and formulae to calculate G and a brief table
of G values and degrees of freedom.

CFA 5 FAijg = m 1 aj 1 bg 1 (ab)jg 1 eijg Two-way ANOVA model (Type I) using trait and sample (stressed vs.
unstressed) as independent factors and FA as the dependent factors.
The expressions m, aj, bg, (ab)jg, eijg, and the subscript g denote the
grand mean FA across populations and traits, the effect of trait, the
effect of stress, the interaction term, the error term, and population
(grouping variable), respectively (Palmer 1994). Here, we are interested
in whether the effect of stress (bg) is significant. Equation following
Lindeman et al. (1980, p. 137).

CFA 6 Dig = uj(FFAijgF) MANOVA examining FA differences between samples. Coefficients (u)
are calculated to maximize the differences between D values of
stressed and unstressed populations. Equation following Lindeman
et al. (1980, p. 171).

Note: The CFA numbers correspond to numbers used in the text. Subscripts: ndividual, , and . The variable k representsi = i j = trait g = population

the number of traits per individual.
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APPENDIX B

Ranges of Type I errors and power were presented for analyses using single traits and CFA measures (see app. A for
CFA measures). Baseline conditions were that underlying FA distributions of all traits were normally distributed,
centered at 0, uncorrelated, without measurement error, and homogeneous between traits. We used 40 individuals and
10 traits for the baseline simulations. We then modified parameters to examine five levels of heterogeneity between
traits, three levels of leptokurtosis, three levels of correlations of FA values between traits, three levels of measurement
error, two other sample sizes, and a different number of traits. Levels 1–3 for kurtosis corresponded to average kurtosis
values (g) of approximately , , and , respectively. Levels 1–3 for correlations of FA values corre-g = 0.7 g = 2.9 g = 7.6
sponded to average FA-FA correlations of , , and , respectively. Each level of each conditionr = 0.0052 r = 0.039 r = 0.085
was examined at three different effect sizes ( , , and ). Effect size (E) was measured as the ratio ofE = 1 E = 1.2 E = 1.5
FA variances between stressed ( ) and unstressed populations ( ; i.e., ), where t denotes a trait. When2 2 2 2j j E = j /j2, t 1, t 2, t 1, t

, there was no difference between populations and significance was due to Type I errors. Conditions are discussedE = 1
in more depth in the text.

Table B1: Type I error rates at a = 0.05 ( , see text) of CFA analyses at different parameter valuesE = 1

Type I errors (% significant)

Conditions/levels Single trait CFA 1 CFA 2 CFA 3 CFA 4 CFA 5 CFA 6

Baseline 5.3 4.4 4.5 3.2 5.1 4.4 5.6
Heterogeneous FA distributions:

1. 2 2j = 3 # j1, 1–5 1, 6–10 4.6 5.3 5.2 3.7 4.1 4.9 5.2
2. 2 2 2 2 2j = 3 # j j = j = ) = j1, 1 1, 2 1, 2 1, 3 1, 10 4.7 3.9 4.4 3.0 4.0 4.1 5.3
3. and2 2 2 2j = 3 # j j = 10 # j1, 4–6 1, 1–3 1, 7–10 1, 3 4.2 5.2 4.5 2.9 4.0 5.2 5.2
4. 2 2j = 10 # j1, 1–5 1, 6–10 4.8 5.1 7.1 4.2 5.8 5.8 5.8
5. 2 2 2 2 2j = 10 # j j = j = ) = j1, 1 1, 2, 1, 2 1, 3 1, 10 4.8 4.2 5.0 3.3 4.1 4.3 4.8

Leptokurtism:
1. ranged from 1 to 32jp, t 5.0 6.0 5.8 6.1 6.6 5.9 4.3
2. ranged from 1 to 102jp, t 6.6 4.7 4.8 5.9 17.6 5.0 3.8
3. ranged from 1 to 1002jp, t 4.1 5.8 6.7 6.2 33.7 6.4 2.2

Correlations of FA values:
1. C = 0.091 4.8 4.7 4.6 4.7 4.5 5.0 4.1
2. C = 0.23 5.3 5.3 5.3 6.3 6.6 9.0 3.8
3. C = 0.33 4.9 6.2 6.3 6.4 9.6 12.2 5.0

Measurement error:
1. ME = 0.091 4.6 5.3 5.5 5.6 3.7 5.1 4.2
2. ME = 0.23 4.3 5.1 5.2 4.8 4.2 4.9 4.4
3. ME = 0.33 5.2 5.2 5.2 5.2 4.5 5.2 4.8

Number of traits (k = 5) 6.3 6.0 5.8 4.7 5.1 5.4 6.1
Sample size:

1. N = 80 5.5 4.5 4.6 3.1 3.9 4.4 4.4
2. N = 20 (k = 5) 5.4 4.2 4.0 4.3 4.1 3.3 4.6
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Table B2: Power (% significant) of CFA analyses at different parameter values

Power (% significant)

Conditions/levels Single trait CFA 1 CFA 2 CFA 3 CFA 4 CFA 5 CFA 6

Baseline:
E = 1.2 10.2 34.9 35.3 27.4 25.8 35.1 9.4
E = 1.5 20.6 85.2 84.8 70.3 74.1 85.1 28.3

Heterogeneous FA distributions:
E = 1.2:

1 8.6 31.4 31.5 26.8 26.8 32.6 8.5
2 9.7 33.0 33.3 26.7 27.5 33.4 8.7
3 8.9 29.4 31.6 26.4 25.8 30.2 8.5
4 10.8 28.0 31.6 25.8 25.1 27.8 9.0
5 10.7 29.2 34.7 28.3 26.7 29.4 8.3

E = 1.5:
1 19.1 83.5 83.7 72.9 74.6 84.3 29.5
2 19.6 82.8 83.5 69.3 75.0 83.8 27.0
3 19.2 79.0 84.3 71.5 77.4 80.1 29.0
4 21.7 77.4 84.1 72.5 75.3 78.9 28.8
5 20.9 75.4 84.0 70.2 74.7 76.3 27.8

Leptokurtism:
E = 1.2:

1 8.5 28.0 26.5 21.1 30.5 28.1 7.3
2 5.9 18.6 17.6 18.3 34.2 18.8 5.0
3 4.5 10.2 10.7 16.0 43.3 10.0 2.3

E = 1.5:
1 18.8 75.1 74.4 62.5 73.0 76.4 23.3
2 14.8 49.9 50.5 49.6 60.6 50.9 10.1
3 8.5 20.9 24.4 46.0 59.4 22.6 4.3

Correlations of FA values:
E = 1.2:

1 10.3 32.6 31.3 26.1 26.4 35.2 8.3
2 11.1 26.8 26.3 21.5 29.0 36.0 7.4
3 8.2 21.0 20.9 18.1 29.4 35.2 5.1

E = 1.5:
1 21.1 85.2 84.0 72.6 74.4 86.9 28.4
2 17.7 70.7 70.1 56.6 70.7 81.2 16.4
3 20.5 61.5 60.7 52.4 70.5 78.5 14.4

Measurement error:
E = 1.2:

1 9.8 28.3 28.0 22.4 22.6 29.0 6.2
2 9.7 22.1 22.8 17.9 19.8 24.1 6.2
3 8.1 18.5 18.1 14.8 14.8 18.9 6.6

E = 1.5:
1 18.4 78.3 78.0 63.8 69.3 80.4 22.0
2 16.4 69.9 68.2 53.8 58.4 70.6 17.3
3 13.9 58.6 57.3 44.2 47.5 60.0 12.6

Number of traits:
E = 1.2:

1 8.1 20.9 20.9 16.7 17.3 21.3 7.4
E = 1.5:

1 19.9 59.2 59.2 46.9 55.8 59.7 21.4
Sample size:

E = 1.2:
1 13.1 51.4 51.5 40.9 49.9 51.3 13.7
2 8.8 14.4 14.1 12.2 11.8 15.4 6.2

E = 1.5:
1 32.7 98.6 98.1 90.7 98.3 98.7 64.6
2 13.2 33.7 32.6 26.8 27.1 36.1 9.2

Note: Condition numbers correspond to condition numbers and descriptions in table B1.
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APPENDIX C

Estimated kurtosis values at which analyses using CFA 3 become stronger than CFA 2. We calculated t-values using
CFA 3 and CFA 2 for 100 simulations. Between simulations, we increased the degree of kurtosis of the FA distribution
such that a range of kurtosis values was produced. We subtracted the t-values of CFA 2 from the t-values of CFA 3
as a measure of the differences in power of these two analyses ( ). When D was positive, analysesD = t 2 tCFA 3 CFA 2

using CFA 3 were stronger than CFA 2. We regressed D against kurtosis and determined a best-fit line. The point at
which the best-fit line intercepted the X-axis (i.e., ) indicated the point at which CFA 3 became stronger thanD = 0
CFA 2. However, this was only a rough estimate, as there was a great deal of overlap at intermediate levels of kurtosis.
This is illustrated in figure C1, which uses a sample size , number of traits , and effect size . TheN = 40 k = 10 E = 1.5
point at which CFA 3 became stronger than CFA 2 was at a kurtosis value of approximately . Below, we presentg = 3.5
a series of tables of kurtosis values at which CFA 3 became stronger than CFA 2. Each value presented is based on
10 X-intercepts (i.e., 1,000 simulations), such that we could determine the variation in our estimates (standard deviation
of 10 estimates shown in parentheses). The percent of significant relations (using CFA 2) is also given in square
brackets to show the range of powers that we examined. We examined a range of sample sizes (N), effect sizes (E),
and number of traits (k; 500,000 simulations in total). Note that kurtosis values are based on signed FA values of
single traits, whereas analyses using CFA 2 and CFA 3 are based on FFAF.

Table C1: Kurtosis values based on number of traits k = 2

N E = 1.1 E = 1.2 E = 1.3 E = 1.4 E = 1.5 E = 1.6 E = 1.7 E = 1.8 E = 1.9 E = 2.0

10 .85(.31)[5] .70(.26)[3] 1.21(.41)[7] .95(.34)[6] 1.00(.33)[7] .72(.24)[9] .78(.26)[8] .94(.31)[10] .69(.34)[10] .39(.22)[11]

20 2.62(.80)[5] 2.46(.76)[6] 2.58(.79)[9] 2.37(.73)[9] 1.92(.61)[10] 2.01(.63)[9] 1.66(.52)[13] 1.97(.60)[13] 1.88(.59)[16] 1.74(.54)[14]

30 4.11(1.26)[7] 3.42(1.04)[7] 3.58(1.09)[9] 3.48(1.06)[10] 2.68(.87)[12] 2.94(.91)[14] 3.02(.93)[15] 2.61(.79)[19] 2.54(.78)[17] 2.51(.77)[21]

40 5.46(1.69)[4] 4.40(1.34)[7] 4.47(1.37)[9] 4.22(1.29)[11] 3.59(1.13)[14] 3.37(1.03)[15] 3.70(1.14)[17] 3.33(1.04)[20] 2.91(.90)[21] 2.53(.80)[25]

50 6.18(2.10)[7] 5.45(1.69)[7] 4.97(1.58)[10] 3.74(1.19)[14] 3.95(1.31)[15] 4.20(1.27)[16] 4.00(1.23)[20] 3.40(1.10)[24] 3.35(1.05)[25] 3.39(1.04)[26]

60 7.48(2.28)[7] 5.28(1.66)[7] 4.36(1.45)[10] 5.40(1.67)[12] 4.89(1.49)[17] 4.48(1.37)[20] 3.82(1.26)[20] 3.63(1.13)[28] 3.63(1.12)[29] 3.53(1.13)[31]

70 7.28(2.27)[7] 7.39(2.25)[8] 5.65(1.85)[11] 5.56(1.72)[13] 5.57(1.70)[18] 5.16(1.60)[22] 4.38(1.37)[26] 4.15(1.29)[27] 3.07(.96)[31] 2.44(.83)[34]

80 9.03(2.78)[5] 7.86(2.39)[7] 6.61(2.05)[12] 4.85(1.56)[15] 5.44(1.68)[19] 4.58(1.49)[20] 4.14(1.30)[29] 3.55(1.13)[28] 3.62(1.19)[32] 2.87(1.10)[36]

90 8.45(2.68)[6] 8.90(2.73)[10] 5.86(1.98)[13] 5.51(1.78)[16] 3.85(1.57)[22] 4.64(1.50)[26] 3.31(1.05)[27] 2.99(.99)[30] 2.66(1.23)[38] 3.26(1.02)[39]

100 11.84(3.71)[6] 8.54(2.65)[10] 6.70(2.08)[13] 5.37(1.88)[18] 5.20(1.65)[24] 4.11(1.34)[25] 4.34(1.53)[31] 3.42(1.26)[37] 2.62(1.11)[37] 1.82(1.17)[41]

Table C2: Kurtosis values based on number of traits k = 3

N E = 1.1 E = 1.2 E = 1.3 E = 1.4 E = 1.5 E = 1.6 E = 1.7 E = 1.8 E = 1.9 E = 2.0

10 1.00(.36)[5] 1.26(.41)[6] 1.11(.34)[6] .80(.28)[8] .76(.26)[8] .77(.24)[10] .66(.23)[12] .60(.24)[12] .57(.22)[13] .76(.28)[15]

20 2.76(.85)[6] 2.84(.86)[7] 2.46(.75)[10] 2.08(.66)[9] 2.04(.63)[10] 2.17(.67)[14] 1.84(.56)[16] 2.01(.62)[18] 1.67(.53)[21] 1.68(.51)[20]

30 4.15(1.26)[7] 3.62(1.09)[8] 3.75(1.14)[9] 3.13(.96)[11] 3.09(.95)[15] 2.96(.91)[14] 2.85(.88)[18] 2.41(.76)[21] 2.65(.81)[25] 2.24(.69)[25]

40 5.26(1.60)[5] 4.58(1.40)[9] 4.02(1.24)[10] 3.86(1.18)[14] 3.64(1.11)[18] 3.48(1.08)[17] 3.39(1.05)[21] 3.43(1.05)[23] 3.01(.94)[31] 3.12(.95)[30]

50 5.84(1.78)[6] 5.76(1.75)[9] 5.30(1.64)[12] 5.08(1.56)[16] 4.10(1.28)[17] 4.15(1.31)[21] 3.45(1.08)[25] 3.15(.99)[30] 3.22(1.00)[33] 2.71(.85)[35]

60 6.59(2.02)[7] 6.95(2.12)[10] 4.74(1.50)[13] 5.18(1.58)[16] 4.47(1.41)[20] 4.09(1.30)[23] 4.35(1.36)[31] 3.45(1.06)[31] 3.46(1.06)[36] 2.91(.94)[37]

70 7.84(2.38)[7] 6.80(2.18)[10] 6.16(1.88)[18] 4.72(1.47)[18] 5.18(1.59)[24] 3.71(1.33)[24] 3.60(1.13)[31] 3.47(1.12)[37] 4.16(1.28)[38] 3.79(1.17)[43]

80 7.83(2.44)[8] 6.79(2.11)[11] 6.80(2.08)[16] 5.61(1.76)[21] 4.37(1.53)[24] 3.66(1.23)[28] 3.92(1.25)[35] 2.90(.93)[40] 3.35(1.27)[44] 3.16(1.02)[46]

90 8.48(2.66)[6] 7.13(2.26)[11] 6.16(1.91)[15] 6.24(1.91)[21] 5.08(1.56)[25] 5.43(1.70)[33] 4.76(1.53)[34] 3.91(1.37)[43] 3.34(1.15)[47] 2.42(.88)[49]

100 10.07(3.07)[9] 7.88(2.43)[12] 6.35(2.11)[16] 6.44(1.98)[23] 4.09(1.41)[26] 3.15(1.19)[31] 3.56(1.18)[36] 2.28(.89)[43] 3.66(1.16)[50] 2.15(.96)[52]
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Table C3: Kurtosis values based on number of traits k = 4

N E = 1.1 E = 1.2 E = 1.3 E = 1.4 E = 1.5 E = 1.6 E = 1.7 E = 1.8 E = 1.9 E = 2.0

10 1.35(.45)[6] 1.32(.41)[5] .92(.29)[7] .62(.31)[7] .95(.32)[10] .73(.23)[11] .75(.23)[12] .69(.23)[11] .59(.21)[14] .67(.28)[17]

20 2.79(.85)[5] 2.61(.79)[7] 2.53(.77)[10] 2.35(.71)[12] 2.26(.69)[15] 2.16(.66)[15] 1.90(.58)[19] 1.75(.55)[20] 1.60(.49)[23] 1.64(.51)[25]

30 4.28(1.31)[7] 3.94(1.21)[10] 3.23(1.00)[12] 3.48(1.06)[13] 2.89(.89)[17] 3.29(1.00)[19] 2.87(.87)[23] 2.82(.85)[29] 2.33(.72)[28] 2.27(.70)[30]

40 5.30(1.61)[5] 4.63(1.41)[10] 4.29(1.30)[12] 4.08(1.24)[17] 3.83(1.16)[19] 3.67(1.13)[24] 3.52(1.08)[26] 3.25(.98)[30] 2.91(.90)[34] 2.46(.79)[38]

50 6.54(2.00)[7] 5.64(1.72)[10] 5.10(1.59)[12] 4.42(1.37)[20] 4.25(1.33)[20] 4.35(1.34)[25] 4.13(1.26)[32] 3.94(1.19)[34] 3.27(1.01)[38] 3.02(.92)[42]

60 6.77(2.07)[7] 6.09(1.87)[11] 5.62(1.71)[15] 5.37(1.66)[19] 4.57(1.41)[24] 4.22(1.31)[29] 4.49(1.37)[35] 3.84(1.19)[38] 3.87(1.18)[44] 3.34(1.04)[48]

70 7.98(2.46)[9] 6.16(1.91)[10] 6.41(1.99)[18] 4.84(1.49)[20] 5.11(1.57)[27] 4.25(1.36)[31] 3.93(1.24)[36] 4.17(1.29)[43] 3.22(1.06)[47] 3.69(1.16)[50]

80 8.79(2.68)[9] 6.26(1.98)[12] 5.57(1.89)[18] 5.98(1.86)[22] 5.52(1.70)[29] 4.54(1.47)[36] 4.29(1.35)[41] 3.92(1.26)[44] 2.73(.87)[51] 3.10(1.00)[55]

90 9.30(2.86)[9] 6.92(2.16)[14] 5.11(1.82)[19] 6.44(1.99)[24] 4.91(1.59)[32] 4.60(1.44)[39] 4.51(1.44)[44] 4.14(1.32)[50] 3.09(1.00)[55] 2.53(.86)[59]

100 8.62(2.64)[8] 6.67(2.13)[15] 6.94(2.17)[22] 5.03(1.55)[26] 4.85(1.63)[32] 4.02(1.29)[38] 4.26(1.34)[46] 3.38(1.05)[52] 3.27(1.05)[53] 2.13(.81)[61]

Table C4: Kurtosis values based on number of traits k = 5

N E = 1.1 E = 1.2 E = 1.3 E = 1.4 E = 1.5 E = 1.6 E = 1.7 E = 1.8 E = 1.9 E = 2.0

10 1.14(.35)[4] 1.07(.39)[7] .95(.33)[10] .98(.30)[10] .80(.30)[8] .79(.27)[13] .64(.22)[14] .80(.26)[16] .67(.23)[15] .58(.19)[20]

20 2.51(.77)[6] 2.39(.74)[7] 2.38(.72)[10] 2.36(.72)[13] 1.97(.60)[13] 2.05(.62)[16] 1.92(.58)[23] 1.56(.49)[23] 1.87(.58)[25] 1.74(.53)[30]

30 4.36(1.33)[7] 3.71(1.12)[8] 3.71(1.12)[14] 3.12(.96)[15] 3.15(.97)[18] 3.01(.93)[23] 3.03(.92)[25] 2.66(.81)[30] 2.45(.75)[32] 2.25(.70)[37]

40 5.45(1.66)[6] 4.88(1.49)[13] 4.38(1.32)[14] 4.25(1.29)[16] 3.95(1.21)[22] 3.48(1.06)[26] 3.34(1.02)[32] 2.76(.85)[34] 2.77(.86)[38] 2.74(.86)[45]

50 6.01(1.83)[7] 5.59(1.70)[11] 5.10(1.56)[17] 4.60(1.40)[20] 4.07(1.26)[24] 3.68(1.14)[32] 3.64(1.11)[34] 3.63(1.11)[39] 3.09(.95)[43] 2.95(.90)[48]

60 6.70(2.07)[7] 6.51(2.00)[11] 6.40(1.95)[19] 4.61(1.43)[22] 4.17(1.31)[26] 4.11(1.25)[34] 3.93(1.20)[38] 3.62(1.12)[44] 3.19(.98)[47] 3.52(1.08)[54]

70 7.71(2.55)[8] 6.45(1.96)[11] 6.26(1.92)[20] 5.31(1.64)[22] 4.52(1.43)[31] 4.35(1.37)[35] 4.03(1.25)[41] 3.28(1.02)[49] 3.50(1.13)[49] 2.84(.99)[57]

80 6.67(2.11)[8] 6.78(2.09)[13] 5.86(1.80)[19] 5.51(1.72)[27] 5.03(1.53)[32] 4.60(1.42)[41] 3.58(1.26)[47] 3.56(1.12)[52] 3.69(1.15)[60] 3.50(1.10)[61]

90 7.74(2.45)[8] 7.76(2.40)[15] 6.18(1.92)[21] 5.05(1.60)[28] 5.39(1.67)[35] 5.59(1.73)[44] 4.78(1.46)[50] 3.46(1.12)[55] 3.44(1.09)[64] 2.44(.86)[63]

100 8.38(2.58)[9] 6.42(2.11)[14] 5.99(1.84)[22] 5.55(1.72)[30] 5.51(1.70)[36] 4.61(1.41)[43] 4.11(1.37)[51] 2.90(.98)[56] 2.57(.98)[64] 3.21(1.02)[70]

Table C5: Kurtosis values based on number of traits k = 10

N E = 1.1 E = 1.2 E = 1.3 E = 1.4 E = 1.5 E = 1.6 E = 1.7 E = 1.8 E = 1.9 E = 2.0

10 1.21(.38)[7] 1.06(.33)[8] .94(.29)[11] .93(.29)[14] .89(.28)[16] .88(.28)[18] .46(.38)[20] .85(.26)[20] .67(.21)[26] .54(.19)[28]

20 2.66(.81)[6] 2.51(.76)[10] 2.25(.69)[14] 2.31(.70)[18] 2.09(.64)[19] 1.79(.55)[26] 2.04(.62)[30] 1.84(.56)[34] 1.84(.56)[41] 1.80(.55)[42]

30 3.75(1.14)[7] 3.57(1.10)[12] 3.29(1.00)[16] 2.71(.84)[21] 3.34(1.01)[29] 2.84(.86)[32] 2.60(.79)[38] 2.59(.79)[46] 2.40(.74)[49] 2.06(.63)[54]

40 4.89(1.49)[8] 4.49(1.36)[15] 4.12(1.25)[20] 4.01(1.21)[25] 3.43(1.06)[34] 3.35(1.02)[41] 3.12(.98)[47] 2.98(.91)[52] 3.00(.91)[60] 2.82(.87)[63]

50 5.90(1.79)[8] 5.79(1.77)[13] 4.42(1.35)[21] 3.95(1.20)[30] 4.20(1.27)[37] 3.91(1.19)[47] 3.52(1.07)[52] 3.62(1.10)[61] 3.11(.96)[65] 3.05(.94)[69]

60 6.47(1.98)[10] 5.72(1.74)[17] 5.04(1.55)[22] 4.90(1.49)[34] 4.33(1.33)[41] 4.07(1.25)[50] 3.89(1.19)[60] 3.59(1.12)[62] 3.37(1.03)[71] 3.60(1.09)[77]

70 7.14(2.17)[9] 6.36(1.95)[18] 5.35(1.64)[26] 4.98(1.52)[40] 4.39(1.37)[48] 3.93(1.22)[56] 3.53(1.10)[63] 3.58(1.09)[69] 3.16(.98)[76] 3.64(1.13)[80]

80 6.55(2.14)[10] 5.77(1.78)[20] 5.09(1.56)[28] 4.70(1.44)[40] 4.45(1.36)[49] 4.04(1.24)[56] 4.05(1.25)[67] 3.75(1.17)[74] 3.13(.97)[78] 2.81(.92)[83]

90 8.78(2.68)[12] 6.16(1.96)[20] 5.71(1.74)[32] 4.70(1.54)[43] 4.88(1.50)[53] 4.26(1.33)[63] 3.85(1.19)[69] 3.37(1.05)[77] 3.21(.99)[82] 3.41(1.08)[86]

100 8.67(2.67)[12] 5.55(1.94)[22] 4.89(1.58)[35] 5.31(1.62)[46] 4.67(1.44)[56] 4.42(1.36)[67] 4.05(1.25)[73] 3.94(1.22)[77] 3.59(1.13)[85] 3.20(1.01)[89]
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Figure C1: The difference in power of CFA 2 and CFA 3. We subtracted the t-values of CFA 2 from t-values of CFA 3 as a measure of the differences
in power of these two analyses ( ). We regressed D against kurtosis and determined a best-fit line. The point at which the best-fitD = t 2 tCFA3 CFA2

line intercepted the X-axis (i.e., ) indicated the point at which CFA 3 became stronger than CFA 2. However, note the high degree of overlapD = 0
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