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Department of Biology, Centre for Conservation Biology, NTNU

N-7491 Trondheim, Norway

Günter P. Wagner
Department of Ecology & Evolutionary Biology, Yale University

New Haven, Connecticut 06405 USA

Thomas F. Hansen
Centre for Ecological & Evolutionary Synthesis, Department of Biology, University of Oslo

0316 Oslo, Norway

keywords
measurement theory, meaningfulness, dimensional analysis, scale type,

scaling, significance testing, modeling

abstract
Measurement—the assignment of numbers to attributes of the natural world—is central to all

scientific inference. Measurement theory concerns the relationship between measurements and reality;
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its goal is ensuring that inferences about measurements reflect the underlying reality we intend to
represent. The key principle of measurement theory is that theoretical context, the rationale for collecting
measurements, is essential to defining appropriate measurements and interpreting their values.
Theoretical context determines the scale type of measurements and which transformations of those
measurements can be made without compromising their meaningfulness. Despite this central role,
measurement theory is almost unknown in biology, and its principles are frequently violated. In this
review, we present the basic ideas of measurement theory and show how it applies to theoretical as well
as empirical work. We then consider examples of empirical and theoretical evolutionary studies whose
meaningfulness have been compromised by violations of measurement-theoretic principles. Common
errors include not paying attention to theoretical context, inappropriate transformations of data, and
inadequate reporting of units, effect sizes, or estimation error. The frequency of such violations reveals
the importance of raising awareness of measurement theory among biologists.

Introduction

PROGRESS IN science often involves
quantification. Ideas progress from

loose verbal accounts to become rigorous
mathematical models. At the same time,
concepts and entities progress from in-
complete verbal definitions to become
variables and parameters that derive their
meaning from a precise theoretical con-
text. For example, ecology developed from
an unconnected set of verbal ideas in 1920
to a unified science with a rigorous foun-
dation in mathematical population ecol-
ogy by about 1970 (Kingsland 1985), and
similar changes took place during the
modern synthesis in evolutionary biology.
Arguably, empirical progress results mainly
from better measurement. Measurements
improve either because of more rigorous
theory, which defines what is important
to measure, or better instruments, which
allow more accurate measurements of fa-
miliar quantities or make the previously
unknown measurable. The high status of
quantification in science is therefore no
surprise, nor is the desire of researchers to
support their work with quantitative mea-
surements.

For measurements to be meaningful,
however, they must retain their connection
to the theoretical and instrumental con-
text from which they were derived. Mea-
surement theory concerns the relationship
between measurements and reality; its goal
is ensuring that inferences about mea-
surements reflect the underlying reality
we intend to represent. Unfortunately, in
biology, the connection between concepts
and measurements is often lost during the

measurement process. Quantitative mea-
surements flourish, but they are often used
and manipulated in ways that render the
conclusions drawn from them meaningless.
This conclusion is familiar to any participant
in journal clubs or discussion groups.

Consider some brief examples: Dunn et
al. (1999) devised an index of concern for
the conservation of Canadian land birds by
averaging ordinal indices for abundance,
breadth of range, and evidence of popula-
tion decline. Wolman (2006) pointed out
that these averages are meaningless be-
cause ordinal indices do not reflect the
magnitudes of the attributes they measure.
Post and Forchhammer (2002) reported a
negative correlation between climate and
variation in abundance of caribou and
musk ox on Greenland. Vik et al. (2004)
showed that this result is meaningless be-
cause changing the units used to measure
abundance could reverse this correlation.
Diaz and Rützler (2001) reviewed studies
of the importance of organisms on coral
reefs, all of which used the area covered to
measure abundance. Wulff (2001) pointed
out that the most relevant attribute is bio-
mass, and measuring area dramatically un-
derestimates the biomass of sponges rela-
tive to encrusting organisms because sponge
biomass scales with volume. Harvey and
Clutton-Brock (1985) compiled a widely
used source of primate body-size data.
They presented species means without
standard errors, sample sizes, or references
to the source of the data. Smith and
Jungers (1997) traced the source of these
data and found so many errors and inac-
curacies that they concluded that “the data
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table . . . should never have been acceptable
as a source” (p. 549). We will make the case
that such errors are not isolated mistakes
or differences of opinion, but systemic er-
rors in the scientific process that result
from the absence of a theory of measure-
ment and meaning in biology.

Scientific representation of biological re-
ality also extends to the use of mathemati-
cal models to capture biological relations.
Mathematical models are representations
of hypotheses about reality, and their form
and manipulation must be consistent with
the reality they are meant to represent.
Measurement in the usual sense assigns
numbers to aspects of reality, whereas
mathematical modeling assigns functions
to aspects of reality. This representational
aspect of modeling is often forgotten when
specific models are used to represent gen-
eral hypotheses. A typical example is May-
nard Smith’s (1976) claim, based on a
highly specific population-genetic model,
that Zahavi’s handicap principle, in which
individuals display costly traits to enforce
honest signals of quality, cannot work. This
claim was not a mathematical error but a
representational error, because the spe-
cific functional forms assumed by Maynard
Smith were not a complete representation
of the universe of cases inherent in the
handicap hypothesis. Pomiankowski (1987,
1988) and Grafen (1990a,b) showed that
handicaps can evolve under reasonable
conditions on the basis of models with
more general functional forms.

Our purpose here is to bring a broad
measurement theory framework for under-
standing the relationship between mean-
ing and measurement to the attention of
biologists. We believe that awareness of
measurement theory helps us to do better
science by providing tools to ensure the
meaningfulness of our work. Our starting
point is the field of representational
measurement theory, a well-established
mathematical approach that enables us to
determine whether the relationships
among numerical measurements are con-
sistent with the relationships among the
attributes they are meant to represent.
Representational measurement theory is

virtually unknown in biology, so our edu-
cation in the theory has come mostly from
nonbiological sources (Stevens 1946, 1968;
Krantz et al. 1971; Suppes et al. 1989; Luce
et al. 1990; Hand 1996, 2004; Sarle 1997;
Michell 1999). In a few exceptional cases,
biologists have taken an explicitly measure-
ment-theoretic approach (e.g., Stahl 1962;
Rosen 1978b; Wolman 2006), but these seem
to have had little general impact.

We also argue that measurement theory
can be used more broadly as the basis of a
theory of scientific meaning that extends
beyond the domain of the mathematical
theory of representational measurement to
include explicit consideration of what to
measure and what conclusions can be
drawn from those measurements. We sug-
gest the term “conceptual measurement
theory” for this broader approach to the
relationship between measurements and
meaning. This broader aspect of extracting
meaning is more familiar to biologists, as
we are relatively well-versed in how to think
about hypotheses and their testing. Our
claim is that thinking about these as part of
the measurement process is tremendously
useful. We have found that this broader
conception of measurement has followed
naturally as we have begun to incorporate ex-
plicit representational measurement theory
into our own work (Wagner et al. 1998;
Hansen and Wagner 2001a,b; Wagner and
Laubichler 2001; Hansen and Houle 2008;
Wagner 2010). Measurement theory pro-
vides a language for discussion of a part of
scientific practice that is both critical to
good science and frequently done poorly.
Consequently, we will use the term mea-
surement theory to refer to all aspects of
extracting meaning from observations, ex-
periments, and models.

In this review, we first summarize the
basic themes of formal, representational
measurement theory. We then lay out
broader conceptual measurement princi-
ples. We drive home the importance of
these points by making the case that viola-
tions of these basic measurement princi-
ples are widespread in biology, as in the
examples briefly touched on above. Fi-
nally, we discuss what can be done to in-
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corporate measurement theory into the
education and day-to-day thinking of biol-
ogists.

Measurement
We naturally identify entities that exist in

the world (with varying degrees of distinct-
ness) and conceive of attributes of those
entities that seem important to us. The
idea that some attributes are more deserv-
ing of attention than others immediately
makes clear that a priori ideas about what
is important and interesting underlie all
measurement. For example, if our entities
are individual organisms, we might be in-
terested in the attribute “size,” which
might predict which individuals will leave
more offspring. Implicit in this simple
statement are at least five complex con-
cepts. First is the theoretical context that
leads us to care about the number of off-
spring individuals produce, which might
be, among many other possibilities, an evo-
lutionary, an ecological, or an economic
context. Second is at least a hypothesis and
possibly prior evidence that size might be
an important predictor of number of off-
spring. Third is an implicit definition of
size. Fourth is a notion of what constitutes
a countable offspring. Finally, we must cir-
cumscribe the set of organisms to which
our hypothesis is applied.

Measurement consists of an assignment
of numbers to attributes of entities so that
the relations between the numbers can
capture empirical relations among the at-
tributes (Krantz et al. 1971; Luce et al.
1990; Hand 1996, 2004). When what is true
about the relations of the numbers is true
about the relations of the attributes, the con-
clusions we draw from the numbers are
meaningful conclusions about nature. Many
numerical relations could help to capture
empirical realities, including order, differ-
ences, ratios, and equivalence. Which of
these is appropriate depends on our hy-
pothesis about what might actually matter,
the actual empirical relations, and how
measurement is done.

A simple example of the measurement
process is shown in Figure 1. The theoret-
ical context of sexual selection has led to a

hypothesis that the length of a male guppy
predicts his attractiveness to potential
mates. The empirical relationship of lining
up two fish side-by-side and recording
which is longer is captured instead by mea-
surement of length in standard units. The
conclusions about length that can be
drawn from the pair-wise empirical com-
parisons can also be drawn from numbers
properly assigned to lengths. Drawing con-
clusions about the relationship between
male lengths and the larger theoretical
context of male attractiveness to females
then proceeds by the usual scientific pro-
cess, incorporating additional measure-
ments and experiments. Note that whether
the original hypothesis is true or not is not
important to the measurement process.
What is important is that each of the steps
from hypothesis to identification of entities
and attributes to measurements and con-
clusions be well motivated and consistent.
False hypotheses will tend to be rejected
when all these connections hold.

representational measurement
theory

Representational measurement theory is
a mathematical system for determining
when the relations among the numerical
measurements assigned to attributes re-
flect the corresponding empirical reality
(Krantz et al. 1971; Suppes et al. 1989;
Luce et al. 1990; Hand 1996, 2004; Sarle
1997). The clearest introduction to repre-
sentational measurement theory is Chap-
ter 1 of Krantz et al. (1971), and we adopt
their terminology here. The relationship
of attributes in the world is an empirical
relational structure and consists of a set of
entities (e.g., organisms, genotypes, genes,
or proteins), the empirical operations that
can be made with those entities (e.g., com-
paring, combining, mutating, or placing in
an environment), the attributes that arise
from those operations (e.g., contest out-
come, trait value, or fitness), and the infer-
ences that can be made from comparison
of those attributes. The empirical rela-
tional structure is then represented by a
numerical relational structure in which at-
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tributes are mapped to numbers and em-
pirical operations and comparisons are
mapped to mathematical relat ions
(greater or less than) and operators (ad-
dition or multiplication). A numerical re-
lational structure has the property of

meaningfulness when inferences about
numbers can be translated into inferences
about the original entities (Weitzenhoffer
1951; Luce et al. 1990). Which kinds of nu-
merical relationships are meaningful in this
sense is a natural way to define scale type. Thus,

Figure 1. The Measurement Process
We imagine a study where the theoretical context is sexual selection. Within this context, we focus on

attractiveness of males and then on the hypothesis that size influences attractiveness in the guppy. Size can be
measured in many ways, so the concept of “size” was referred to the attribute “overall length of the fish” under
the hypothesis that females prefer large males and treat the tail as part of the body. The middle third of the
figure represents the empirical relations that are at the root of measurement. For empirical comparison of
length, fish could be aligned with their noses against a flat surface, and the identity of the fish that extends
farther noted. For a pair of fish A and B, the possible results are that A extends farther than B, which we can
represent as A � B; that we cannot decide whether A extends farther than B, A � B; and that A extends less far
than B, A ≺ B. Representational measurement theory proves that the conclusions that can be drawn about
length on the basis of the pairwise empirical comparisons can also be drawn from a numerical system consisting
of numbers (a and b) assigned to lengths of A and B plus a mapping of the empirical relations �, �, ≺ among
fish to the relations �, �, and � among the numbers.
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scale type encapsulates what properties of a set
of measurements could be used to draw em-
pirically meaningful conclusions.

Assignment of numbers to attributes—
the act of measurement—usually depends
on just a few empirical relations (reviewed
in Krantz et al. 1971, Chapter 1; Hand
2004). Primary among these is a procedure
by which the order of attributes can be
established—that an elephant is bigger
than a mouse, that 17 May 1814 is later
than 4 July 1776, or that animal A is socially
dominant to animal B. For example, in
Figure 1, the empirical procedure is to
place fish next to each other in a standard
orientation, with their snouts against a flat
object, then see which fish’s tail extends
farther. This simple operation gives us
both the order of lengths and operational
equivalence, when we judge that we cannot
tell which of the two extends farther. A
second empirical operation critical to
many measurements is combining entities
so that their attributes are also combined
in a meaningful way. This is termed concat-
enation. For the fish in Figure 1, we could
cut rods equivalent to the length of each
fish, then lay the rods end to end to ask
questions such as: “Is twice the length of
fish A greater or less than the length of fish
B?” When concatenation operations are
possible, we can also construct a standard
sequence of concatenated entities (a ruler,
for example) that permits counting of at-
tributes in standard units of measurement.
A second example is measurement of mass.
The empirical operation of placing an ele-
phant and a mouse on a balance will tell us
that the elephant is heavier because the
scale tips toward the elephant. We can
then “concatenate” mice by placing more
than one mouse (or other more conve-
nient objects that are each equivalent in
weight to a mouse) on the scale, to deter-
mine how many mouse equivalents are
necessary to make something as heavy as
an elephant, that is to measure mass of the
elephant in mouse units. The empirical
relational structure includes the animals
we wish to compare and the operations of
concatenation (e.g., placing more than
one mouse on a scale) and comparison

(does the scale tip toward the elephant or
the mice?).

Measurement then proceeds by assign-
ment of numbers to attributes and mathe-
matical operations (such as addition) to
empirical operations (such as placing ob-
jects on a scale); together the numbers and
the operations define a numerical rela-
tional structure. When both order determi-
nation and concatenation are empirically
relevant, these operations can be mapped
to a numerical relational structure that
uses positive real numbers to represent the
attribute, addition to represent concatena-
tion, and the � operator for comparisons.
Measurement in these cases is termed exten-
sive measurement; both lengths and weights
are therefore extensively measurable attri-
butes.

A second important type of empirical
relational structure arises when measure-
ment depends on paired comparisons be-
cause no natural concatenation operation
is possible; this is termed intensive measure-
ment. This approach was developed in psy-
chology for measurement of attributes
such as attractiveness or utility of objects to
test subjects (see, e.g., Luce 1959). Subjects
are confronted with pairs of objects, such
as faces of humans, and asked to rank
them. With repeated trials and under cer-
tain well-defined conditions, an overall
judgment of the quality of the individual
can be made, for example, the “intrinsic
attractiveness” of a face. Recently, a similar
approach has proven useful for defining a
measure of fitness based on pairwise com-
petition experiments, for example, among
a set of bacterial strains (Wagner 2010 and
see below).

Representational measurement theory
proves which numerical relational struc-
tures can correspond precisely to the em-
pirical results one would obtain using the
actual entities, such as fish or mice and
elephants. Narens (1981, 1985) and others
(Luce et al. 1990, Chapter 20) have shown
that only a small number of such numer-
ical relational structures can preserve
meaningfulness given these types of sim-
ple empirical relations. More familiarly,
these structures define the scale types first
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identified by Stevens (1946, 1959, 1968).
The scale types relevant to biological sys-
tems are listed in Table 1 with examples of
each. Figure 2 shows examples of scale
types resulting from measurements on a
set of fish. We emphasize that scale types
can be characterized in several different
ways: most fundamentally, they are deter-
mined by the empirical operations that the
scientist wishes to represent using numeri-
cal operations. It is very important to note
that the theoretical context is an irreduc-
ible part of this formulation. The same
data (for example, lengths) may reside on
a different scale type depending on the
question asked. We give specific examples
of this relationship between scale type and
hypothesis below. A second convenient char-
acterization of scale type refers to the kinds of
mathematical relationships among the mea-
surements that are potentially meaningful,
and this has led to the names of the scale
types: nominal, ordinal, interval, log-interval,
difference, ratio, signed ratio, and absolute.
Third, the scale types can be formally char-
acterized by three related properties: the
permissible transformations that preserve
the relevant relationships among measure-
ments, the number of arbitrary parameters
that must be adopted to establish the nu-
merical system, and the domain of num-
bers (or symbols) to which they apply.

An understanding of scale types is most
easily developed from specific examples.
For the examples of length and weight de-
veloped above, note that the empirical re-
lations can be used to establish the order
of attributes (fish A is longer than fish B)
and their differences (elephant A is
heavier than elephant B by 20 mouse
units) and ratios (the concatenation of two
fishes the length of A is equivalent to the
length of fish B). Any numerical relational
system that reflects all of those relation-
ships is by definition on a ratio scale. Pos-
itive real numbers are the domain of the
measurements, as a negative weight or
length has no physical equivalent. To map
attributes to numbers, we had to specify
one arbitrary parameter in these cases—a
unit of length or mass. Permissible transfor-
mations of the numerical data are defined
as those transformations that preserve the
correspondence of the numerical relation-
ships to all the empirical relationships that
could be measured. For ratio scales the
only permissible transformation is multipli-
cation by a constant. To see this, assume
that we have four entities and that the em-
pirical attributes, say lengths, are repre-
sented by the letters A, B, C, and D. We
then measure the four lengths and map
the nonnumerical attribute A to a number
a, the attribute B to b, and so forth. If we

TABLE 1
Classification of scale types (after Stevens 1946, 1959, 1968; Luce et al. 1990:113)

Scale type
Permissible

transformations Domain
Arbitrary

parameters
Meaningful
comparisons Biological examples

Nominal Any one-to-one
mapping

Any set of symbols Countable Equivalence Species, genes

Ordinal Any monotonically
increasing
function

Ordered symbols Countable Order Social dominance

Interval x -� ax�b Real numbers 2 Order, differences Dates, Malthusian fitness
Log-interval x -� axb, a, b�0 Positive real numbers 2 Order, ratios Body size
Difference x -� x�a Real numbers 1 Order, differences Log-transformed ratio-

scale variables
Ratio x -� ax Positive real numbers 1 Order, ratios,

differences
Length, mass, duration

Signed ratio* x -� ax Real numbers 1 Order, ratios,
differences

Signed asymmetry, intrin-
sic growth rate (r)

Absolute None Defined 0 Any Probability

* Luce et al. (1990) defined this ratio scale but did not discuss or name it. Stevens did not consider this scale.
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can show, with an empirical operation, that
the number of As that must be concate-
nated to be equivalent to B is less than the

number of Cs that must be concatenated to
be equivalent to D, we want our numerical
measures to have the properties a/b � c/d

Figure 2. Representational Measurement Theory
A set of entities, individual fish, can be associated with different empirical relational structures depending on what

attributes we focus on and the context we are interested in. Each attribute induces more or less strict order and
equivalence relations among the fish. Representational measurement consists of mapping these relations to a
numerical system such that the relations among the attributes are preserved in the relations among the numbers
assigned to them. The scale types refer to mappings that preserve different relations. The attribute of mass illustrates
a ratio scale type. In many conceptual contexts, for example, studies of metabolic rate, a compelling logical reason
favors adoption of mass as the appropriate attribute to measure. In this case, we require a mapping that preserves
the order of all fish according to mass (as illustrated) and also the order of differences and ratios between their
masses. We can use a standard unit (say, the gram) that we could add up to describe the mass of any of the fishes.
The only operation we could apply to our measurements that would preserve these properties would be multiplying
by a constant (for example, changing the unit from gram to pound). If we were interested in size, but had no reason
to choose mass as a measure of size over other possible measures such as length or area, then we would have to admit
raising to a power to the permissible transformations, yielding the log-interval scale. On this scale type, the order of
differences in fish size is meaningless because the order of differences can change depending on the choice of
exponent, but the order of their ratios is meaningful because the order of ratios does not change with the choice
of exponent. Note that whether each of these measures of body size is on a ratio or log-interval scale depends on
the conceptual context, not on the attribute itself. The residuals of a regression of tail length on body length
measure relative tail size. This example illustrates an interval scale type, where differences between relative tail sizes
are meaningful (i.e., a natural unit exists), but their ratios are meaningless. The differences themselves reside on a
signed ratio scale, so we can say that the relative tail area of the left fish differs from that of the second fish (0.39)
by 11% more than that of the last fish differs from that of the third fish (0.35). If we seek only to represent order,
as can be illustrated by contrast in the context of male attractiveness judged by females, we have an ordinal scale type.
In that case, statements such as “the difference between fish A and fish B is larger than the difference between fish
B and fish C” are meaningless. Finally, a nominal scale type, as illustrated by imaginary throat morphs, preserves only
equivalence relations; order is meaningless.
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and a�b � c�d. Multiplying all of the nu-
merical measurements by the same con-
stant obviously preserves the truth of these
statements; any other type of transforma-
tion, such as exponentiation or adding a
constant to each number, can readily lead
to violation of one or both statements.

Log-transformation of ratio-scale vari-
ables places the data on a new scale type,
the difference scale, with the domain of
the real numbers. On this scale type, dif-
ferences are equivalent to ratios of the cor-
responding exponentially transformed val-
ues. The only permissible transformation is
addition of a constant.

Body size is fundamental to much of bi-
ology, and a considerable literature ad-
dresses allometry and scaling relationships
between size and a wide variety of other
phenotypes (e.g., Schmidt-Nielsen 1984).
Inspection of this literature, however, reveals
two features. First, in most cases, measures of
size are log-transformed before analysis. Sec-
ond, measures of size can be measured on a
linear, area, or volume scale, and these are
treated interchangeably (Solow and Wang
2008). For example, to investigate Cope’s
Rule that body size tends to increase within
lineages, Alroy (1998) studied the log body
mass of fossil mammals predicted from lin-
ear tooth dimensions, whereas Hone et al.
(2005) used log bone length. The inter-
changeability of these scales in practice sug-
gests that biologists consider raising mea-
sures of size to a power to be a permissible
transformation. Choice of (for example) lin-
ear over volume measures is seen as a matter
of convenience or convention. A key impli-
cation of this practice is that ratios are mean-
ingful—the order of ratios, say a/b � c/d, is
preserved when one raises all the measure-
ments to a power—but that the order of
differences is not. For example, say that a �
5, b � 1, c � 10, and d � 7. On this scale,
a/b � c/d (5 � 1.43) and a-b � c-d (4 � 3).
When the measurements are raised to the
power of 2, the ratio a2/b2 is still greater
than c2/d2 (25 � 2.04), but the order of the
differences is reversed: a2 � b2 � c2 � d2

(24 � 51). The scale type with these permis-
sible transformations is the log-interval—so
named because once the data are log trans-

formed the ratios that are meaningful on the
original scale become differences residing
on an interval scale type.

A key example of the context depen-
dence of scale type now presents itself:
above, we claimed that body lengths and
body mass are on a ratio scale, and now we
say that they are on a log-interval scale. The
difference is that different theoretical con-
texts are applied in the two cases. When a
measure of length is treated as a measure
of length it is on a ratio scale. For example,
if, as in Figure 1, we hypothesize (or have
evidence) that female guppies really choose
their mates on the basis of body length, rather
than volume, then the choice is dictated by
this hypothesis. In an allometric context,
we choose to regard powers of body size as
potentially relevant to the questions. This
distinction is a key part of our argument
that measurement theory must incorpo-
rate theoretical context and is therefore
relevant to the wider issues of scientific
reasoning.

If our data consisted of dates of occur-
rences, the interval scale type would be
appropriate. The key difference between
interval and ratio scales is that the empiri-
cal relation of concatenation does not ap-
ply: one cannot directly concatenate dates.
How would you decide how many 4 July
1776s add up to give you a 17 May 1814?
Without this operation, the magnitudes of
dates cannot be directly judged; the ratio
of dates does not correspond to an empir-
ical operation and is therefore not mean-
ingful. We can, however, use the difference
between two dates, say January 1 and Jan-
uary 2 as our concatenatable unit—how
long we wait until the date changes. Then
the difference between 4 July 1776 and 17
May 1814 can be expressed as the number
of days on top of 4 July 1776 that are
needed to reach 17 May 1814. The permis-
sible transformations therefore include ad-
dition of a constant, for example, adopting
the Judaic or the Islamic calendar instead
of the Gregorian calendar, as well as mul-
tiplication by a constant (adopting the Ju-
lian year, rather than Gregorian one). To
arrive at this system, we must specify two
arbitrary parameters, the starting and stop-
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ping dates we use as a standard unit of
time. The use of concatenation in measur-
ing the difference between two dates or
temperatures means that the differences
between dates are extensively measurable
and therefore on a ratio scale.

The case of an interval scale allows us to
illustrate the important distinction be-
tween scale and scale type. Other familiar
examples of interval scale type are the Cel-
sius and Fahrenheit temperature scales. All
temperature scales based on arbitrary nu-
merical assignments to two states, such as
freezing and boiling points of water, are on
the interval scale type regardless of the unit
of temperature used, but once a unit of
temperature has been chosen, we have a
scale on which units are essential to the
interpretation of the numbers. When we
say, on the basis of scale type, that differ-
ences can be meaningfully compared,
what we mean is that the relationships of
the differences are preserved under the
permissible transformations and not that
the numerical values of the differences are
preserved. For example, if temperature
changes in one hour from 8 to 10 in de-
grees Celsius, and then in the second hour
to 11 degrees C, we can conclude that the
temperature rose twice as fast in the first
hour as in the second hour. If we convert
to the Fahrenheit scale, the temperatures
(46.4 to 50 to 51.8 degrees F) and the
differences (3.6 and 1.8 degrees F) change,
but temperature can still be inferred to
have risen twice as fast in hour one as in
hour two.

Now consider the case of social domi-
nance, in which animals can be placed on
a simple linear hierarchy. The single rele-
vant empirical operation is to place two
animals together and observe which one is
dominant. The outcome of such a contest
does not directly tell us anything about the
magnitude of the difference between ani-
mals. No empirical operation corresponds
to concatenation, either of the animals
themselves or of their differences. Even if
we could duplicate animal A and put two
As with one B, the result would no longer
tell us anything about pairwise dominance.
Similarly, knowing that both A and B are

dominant to C does not necessarily tell us
anything about the relation between A and
B. Therefore, any numerical system that
preserves the order is permissible, and the
scale type is ordinal. The assignment of
numbers to submissive and dominant indi-
viduals could as well be 1 and 2 as 1 and
1000 or 999 and 1000.

The absolute scale type differs from the
others in that no transformation is permis-
sible. For example, the axiomatic defini-
tion of a probability constrains its domain
to the interval 0 and 1 and specifies the
precise meaning of any value on that
range. An arcsine square-root transformed
probability is not a probability.

In Table 1, we also consider two exam-
ples of a relatively unknown scale type, the
signed ratio scale. This type had previously
been identified on mathematical grounds
(Luce et al. 1990), but to our knowledge
no real examples have been discussed. This
scale differs from the ratio scale in that the
domain includes all real numbers, so ratios
have a sign that can be negative or positive.
For example, for a measurement of signed
asymmetry (length of structure on the left
side of the body minus length of the
same structure on the right side), both
the ratio of the asymmetry and whether
the asymmetry is in the same direction are
meaningful. Similarly, the intrinsic rate of pop-
ulation increase has both a magnitude and a
sign.

pragmatic measurement theory
In many situations, the relationship be-

tween attributes and the numerical values
we use to represent them is not entirely
clear. At one extreme, these uncertainties
stem from quantifiable factors such as mea-
surement error that need not challenge
our understanding of the empirical rela-
tional system. At the other extreme, we may
be studying an attribute about which we can-
not be sure what measurements can actually
represent it or even whether a hypothesized
attribute actually exists. Numerous examples
of such attributes exist in behavioral re-
search, and these have been much discussed
in the application of measurement to psy-
chological research (see, e.g., Michell 1999).

12 Volume 86THE QUARTERLY REVIEW OF BIOLOGY



For example, it is still controversial whether
the perception of sensory stimuli leads to a
quantitative attribute called sensation, or
whether intellectual ability is really a quanti-
tative trait. These uncertainties arise particu-
larly when the goal of measurement is to
predict some future outcome, without neces-
sarily having any underlying model of the
relationship between the attributes that are
measured and the outcome (Breiman 2000).

These considerations have occasioned
considerable debate about the usefulness
of representational measurement theory.
In the extreme, some claim that represen-
tation is an illusion and that measurements
capture only what the measurement proce-
dure measures. This view leads to the phil-
osophical position of operationalism, in
which scientific concepts and variables are
defined solely in terms of their measure-
ment procedures (Bridgman 1927). In this
view, intelligence is nothing more than
what is measured by intelligence tests (Bor-
ing 1945). Sneath and Sokal (1973), for
example, used operationalism to argue for
quantification and algorithmic decision-
making in biological classification because
it would be repeatable and objective, con-
sciously giving up the goal that such classi-
fications would reflect evolutionary history.
Such positions contrast sharply with repre-
sentational measurement theory, which as-
sumes that the point of measurement is to
ensure meaningful statements about an
empirical relational structure that may ex-
ist whether we are there to measure it or
not.

Today, pure operationalism is largely
discounted by most scientists, but many au-
thors acknowledge that many measure-
ments are not purely representational,
even when representation of an empirical
system is the goal (Hand 1996, 2004).
Hand (2004) called these nonrepresenta-
tional aspects of measurement pragmatic.
The more pragmatic the measurements
are, the greater the uncertainty about
whether the measurements actually repre-
sent the attribute we want to characterize
and, therefore, about the potential mean-
ing of the results. Pragmatic considerations
often arise when researchers must choose

between several alternative measurements
of the same underlying entity. For exam-
ple, we might wish to measure the attribute
“sexual attractiveness to females” of a sam-
ple of males in a population, but unless we
fully understand what goes on in the brain
and nervous system of those females, we
cannot know how best to assess attractive-
ness.

McGhee et al. (2007) measured two as-
pects of male-female mating interactions in
the bluefin killifish (Lucania goodei): the
time a female spent associating with each
of two confined males and which of two
males was successful when two males and
one female were placed in a single tank
with no barriers. Association and mating
success were poorly correlated, and which
of them is a better measure of attractive-
ness is unclear. One interpretation of
McGhee et al.’s finding is that female in-
terest in the confined males measures attrac-
tiveness, which then gets overwhelmed by
male-male interactions. A second is that
male-male interactions furnish additional
information on mate suitability to females,
changing their preferences (Wiley and Pos-
ton 1996). A measurement-theoretical re-
sponse would suggest additional investiga-
tion of the link between the measurement
and the underlying entity (e.g., Michell
1999), but this is often a very difficult
task. Most studies make the pragmatic
choice of one measure of an attribute such
as attractiveness, without verifying that it is
the best such measure. This pragmatic ap-
proach may be the best way forward because
a standard assay may at least be comparable
across different experiments. The possible
shortcomings of one’s measure should be
borne in mind and reevaluated when the
opportunity arises. Humility and com-
mon sense are necessary complements to
representational measurement theory.

Discussion of these issues can be facilitated
by the concept of validity, which “de-
scribes how well the measured variable
represents the attribute being measured”
(Hand 2004:129). Validity is widely dis-
cussed in the social and behavioral sci-
ences, and to some extent in medicine,
particularly with respect to the represen-
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tation of mental states. It can be usefully
applied in evolutionary biology as well.

taking a broad view of measurement
theory

Although the formal results of represen-
tational measurement theory are not famil-
iar to most biologists, the fundamental is-
sues that they address are the concern of
every working scientist: how we can best
understand reality. All measurement stems
from a theoretical or conceptual context;
good science depends on preserving the
connection of measurement, data han-
dling, analysis, and interpretation to that
conceptual context. Our provisional ideas
about the study entities specify the relevant
attribute and, thus, the hypothesized em-
pirical relational structure we should study.
Once this step is taken, representational
measurement theory ensures that our num-
bers reflect the necessary empirical relations.
Specifying an empirical relation system to
study and drawing conclusions from the
observed empirical relations back to the
concepts—i.e., “conceptual measurement
theory”—is part of the measurement pro-
cess.

The importance of concepts and hypoth-
eses for measurement can be illustrated
with the question: Why are giraffes (Giraffa
camelopardalis) so tall? The obvious expla-
nation proposed by many (e.g., Darwin
1871, Chapter 7) is that giraffes are tall so
that they can browse on tall trees. When
this hypothesis is investigated, height is
clearly the relevant attribute. Alternatively,
Simmons and Scheepers (1996) proposed
that giraffe necks are an adaptation for
male-male competition. Male giraffes com-
pete for dominance by “necking,” combat
in which males swing their armored heads
at one another. This hypothesis suggests
that height is not the most informative as-
pect of form to measure; instead measure-
ments might focus on the amount of force
that can be delivered by the swinging head,
which must be a nonlinear function of the
mass of the head and length of the neck.
The cause of the elongated shape of gi-
raffes has not been resolved (Cameron and
du Toit 2007), but different hypotheses

clearly assign different meanings to the
same phenomenon.

The importance of multiple hypotheses
in this example suggests a measurement-
theoretic explanation for the effectiveness
of “strong inference” (Platt 1964) and the
“method of multiple working hypotheses”
(Chamberlin 1890, 1965). The common
element to these approaches is that the
researcher should seek to consider all rea-
sonable hypotheses simultaneously rather
than to focus on only one. In Chamberlin’s
evocative terms, “the investigator thus becomes
the parent of a family of hypotheses: and, by his
parental relation to all, he is forbidden to fas-
ten his affections unduly upon any one”
(Chamberlin 1890, 1965:756). In the measure-
ment context, the investigator considers that
the same phenomenon may reflect a variety
of underlying empirical relational systems
and, thus, that a variety of measures may be
desirable. The same data may have a dif-
ferent meaning under each hypothesis.

Measurement Theory as an Aid to
Modeling and Statistics

The premise of measurement theory is
that we make measurements to learn about
an empirical relational structure. Hypoth-
esized empirical relational structures are
also the basis for theoretical models, so an
important but underappreciated role for
measurement theory is as a guide to the
definition and identification of parameters
in models. A good definition must identify
forms and parameters that are operational
in that they represent the relevant empiri-
cal relations and can also be related to
obtainable data. This principle is linked to
Lewontin’s (1974) conceptions of a dynam-
ically sufficient system as one that would
allow prediction if its parameters were
known and an empirically sufficient system
as a dynamically sufficient system whose
parameters are estimable with sufficient
accuracy to allow prediction. Dynamically
sufficient parameters are meaningful from
a measurement-theory perspective. Empir-
ically sufficient ones lead to actual mea-
surements that are meaningful.

The quantitative genetic concepts of ad-
ditive effects and additive genetic variance
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are good examples of variables that are both
dynamically meaningful and empirically op-
erational. Fisher (1918) developed an ab-
stract model of the genotype-phenotype map
and proposed population-level measures of
the effect of allele substitutions, the average
excess, and the additive effect (Fisher 1941).
The additive genetic variance is the popula-
tion variance of these effects (summed over
loci) and, because the response to selection
depends on variance (Fisher 1930; Price
1970), the additive variance emerges as a key
parameter for prediction of the short-term
evolvability—capacity of a population to
evolve (Houle 1992; Wagner and Altenberg
1996). Fisher’s measures are approximately
dynamically sufficient in that they capture
that part of the effect of alleles on the phe-
notype that determines how their frequen-
cies change under an episode of selection,
although they are not dynamically sufficient
for long-term evolution (Frank 1995). In
addition, Fisher also showed that these
parameters are all estimable from data on
the phenotypes of relatives and thus empiri-
cally sufficient for the task of predicting
short-term response to selection.

dimensional analysis
Dimensional analysis is perhaps the most

important practical application of mea-
surement theory in theoretical physics and
should be integral to all model building. In
its simplest form, it requires that mathe-
matical models be dimensionally consis-
tent (i.e., that the units on the left- and the
right-hand sides of an equation be equal;
apples cannot equal oranges), and it pro-
vides a technique for reducing the model
to a minimum number of dimensionless es-
sential parameters. Despite sporadic applica-
tions (e.g., by Stahl 1961, 1962; Rosen 1962,
1978a,b; Gunther 1975; Heusner 1982, 1983,
1984; McMahon and Bonner 1983; Prothero
1986, 2002; Stephens and Dunbar 1993;
Gunther and Morgado 2003; Frank 2009),
more formal dimensional analysis has played
little role in biological theory or modeling.
This is reflected in the arbitrary assumptions
about functional forms that are commonly
found in biological models.

The key result in formal dimensional anal-

ysis is Buckingham’s � theorem (Bridgman
1922, Chapter 4; Krantz et al. 1971, Theorem
10.4). This theorem considers a putative law
or model that relates a set of ratio-scale vari-
ables, xi, as f(x1,...xn) � 0, where f is an arbi-
trary function. The units of these variables
can be used to identify a set of fundamental
variables (and scales) that span the n x vari-
ables (for the technical meaning of “span”
see Krantz et al. 1971). If exactly m funda-
mental scales exist, the � theorem guarantees
that the law can be reformulated as a function
of n - m new variables that all are products of
powers of the original variables as g(�1, . . ,
�n-m) � 0, where �i � x1

a1 � x2
a2 � . . . � xn

an, where
each �i has a different combination of ex-
ponents, aj.

If it is known what variables enter a prob-
lem, this theorem can be surprisingly pow-
erful in simplifying and solving models. As
an example, it can be used to derive the basic
exponential growth equation of population
ecology from minimal assumptions. Assume
that all we know is that population growth
involves the three ratio-scale variables popu-
lation number at time t, N(t); population
number at time zero, N(0); time, t; and a
signed ratio-scale variable, the rate param-
eter, r. Our model or “law” of population
growth then takes the form f(N(t), N(0), r,
t) � 0, for an unspecified function f, where
we also assume that N(t) can be uniquely
expressed by the rest of the variables. The
units of N(t) and N(0) are individuals (or
individuals per area), the unit of time is a
time interval (e.g., seconds or genera-
tions), and the unit of r is the inverse of the
time interval. We therefore have four vari-
ables and two fundamental scales, which
are individuals and time. The � theorem
implies we can write the model in terms of
two dimensionless variables that will have
to involve powers of N(t)/N(0) and powers
of rt. The result is g(N(t)/N(0), rt) � 0 for
some function g. By the assumption that
N(t) is a function of the other variables, this
function can then be rewritten as N(t) �
N(0)h(rt) for some function h. Because h
does not depend on any parameters beyond rt,
this implies that N(t) � N(s)h(r(t�s)) for any
time s � t. Hence, we must have N(0)h(rt) �
N(s)h(r(t�s)), and that implies

March 2011 15MEASUREMENT AND MEANING IN BIOLOGY



h(rt) � (N(s)/N(0))h(rt � rs)
� h(rs)h(rt � rs),

which gives us the functional equation
h(rt) � h(rs)h(rt � rs). Let k(x) � ln(h(x))
and write the equation as k(rt) � k(rs) �
k(rt � rs). This shows that k(x) � ax for
some constant, a, and therefore that
h(x) � eax. By subsuming the constant a
into r, we have derived the exponential
growth equation:

N�t� � N(0)ert

for r � 0 (a similar argument based on r �
0 completes the derivation). Note that we
did this without specifying any model of
population growth. The law of exponential
growth follows entirely from knowing the
relevant variables and their scales. Such
results are, at first, very surprising, but they
signal the general power of dimensional
analysis. Knowing which variables are rele-
vant to a problem conveys a huge amount
of information. Of course, the law of expo-
nential growth may not hold if other vari-
ables or parameters were involved. If, for
example, we add a carrying capacity, K,
with the same units as N, the � theorem
would stipulate three dimensionless vari-
ables in g, and additional assumptions
would be needed to produce a specific so-
lution. The approach will give misleading
results if some relevant variable or param-
eter is omitted.

Among earlier applications of dimen-
sional analysis in biology, we particularly
note Robert Rosen’s program for theoret-
ical biology, in which dimensional analysis
played a central role (Rosen 1978b). For
example, Rosen (1962) derived D’Arcy
Thompson’s (1917) theory of transforma-
tions of biological form from dimensional
arguments based on fitness optimization.
His development was, however, highly ab-
stract and, as far as we know, it has not led
to empirical research. Dimensional analy-
sis has also played a minor role in discus-
sion of physiological scaling relationships
(Stahl 1961, 1962; Heusner 1982, 1983,
1984; but see Butler et al. 1987 for a
devastating critique of Heusner’s use of
dimensional arguments), and such argu-

ments are also central to Charnov’s (1993)
theory of life-history invariants, although
Charnov does not make the connection to
measurement theory explicit. Stephens and
Dunbar (1993) developed applications of di-
mensional analysis in behavioral ecology
with admirable clarity. They showed how the
marginal-value theorem (Charnov 1976) can
be partially derived and illuminated by for-
mal dimensional analysis, and they showed
that certain models of optimal territory size
from the literature are in fact dimensionally
inconsistent.

We believe that dimensional analysis has
been underused in biology. It has the poten-
tial to clarify the necessary and sufficient as-
sumptions for fundamental models and con-
cepts in biology along the lines we have
briefly illustrated for the exponential growth
law.

meaningful modeling
The formal derivation of the exponen-

tial growth law from dimensional consider-
ations shows that it has a status similar to
the familiar “laws” of physics, such as New-
ton’s law of gravitation. To see the analogy
one must appreciate that Newton’s law is
also an abstraction for the most symmetri-
cal case. The gravitational law applies only
to a rotationally symmetrical gravitational
field, which does not exist in the solar sys-
tem because of variations in the density of
matter in the planets and the presence of
other bodies. A similar argument can be
made for the general validity of Wright’s se-
lection equation, which can also be directly
derived from measurement-theoretical con-
siderations (Wagner 2010). Biology includes
rather few such laws, however, and we must
accept that most models in biology are rep-
resentations of qualitative relationships that
are too complex to capture in simple law-like
relations. The complexity and high dimen-
sionality of the relevant empirical relational
structures require that some aspects of rep-
resentation must necessarily be given up.

Levins (1966) described three modeling
strategies based on which aspects of reality
are left out. In type I models, generality is
sacrificed in favor of precision and realism,
as in highly complex fisheries models in
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which as many specific aspects as possible
of the stock in question are included. In
type II models, realism is sacrificed to gen-
erality and precision, as in the Lotka-
Volterra models of population ecology. In
type III models, precision is sacrificed to
generality and realism, as in Levins’s own
models of selection in heterogeneous en-
vironments based on general qualitative as-
sumptions about the fitness function (e.g.
Levins 1962).

Levins himself favored a research strat-
egy in which type III models or multiple
type II models are used to reach robust
qualitative insights and predictions. This
approach contrasts sharply with that taken
in most modeling papers in the fields with
which we are familiar. Typically, a question
is investigated by analysis of a single spe-
cific model of type I or II. In many cases,
results are obtained solely by simulations
based on algorithms including numerous
auxiliary specifications, so the results nec-
essarily have limited applicability. Type I
models can only make predictions for
highly specific circumstances, and type II
models can only demonstrate the possibil-
ity of a phenomenon, not its plausibility.

These limitations are often forgotten in
theoretical biology, where general conclu-
sions are routinely drawn from specific mod-
els. In the introduction, we mentioned May-
nard Smith’s (1976) claim, based on a type
II model, that the handicap principle
could not work. Maynard Smith’s claim was
later shown to be incorrect (Pomiankowski
1987, 1988; Grafen, 1990a,b) and the hand-
icap principle is now a cornerstone of many
sexual-selection models. Using measurement
theory to diagnose the problem, we can see
that arbitrary specific model assumptions,
such as linearity, put constraints on the em-
pirical relational structure that prevent it
from capturing the full range of possibilities
in the idea being modeled.

This dynamic of overly broad claims
from narrow models being overturned by
type III models is quite common. For ex-
ample, Broom et al. (2005) claimed on the
basis of specific families of cost and benefit
functions that automimicry, a situation in
which some defenseless (e.g., nonpoison-

ous) individuals exist within a generally
aposematic species, cannot be maintained
as a stable genetic polymorphism. Sven-
nungsen and Holen (2007) considered a
wider variety of functions and showed that
automimicry can indeed be evolutionarily
stable under a number of realistic condi-
tions. A second example is the large lit-
erature on whether plasticity, learning,
and variation increase or decrease a re-
sponse to selection, known as the Bald-
win effect (Baldwin 1896). Multiple mod-
els have been published showing that
either the Baldwin effect of acceleration
was predicted (e.g., Hinton and Nowlan
1987) or favoring the opposite result of
slower evolution (e.g., Borenstein et al.
2006). Paenke et al. (2007) demonstrated
that the conclusions of these models were
dictated by the change in the slope of the
relationship between fitness and the focal
trait. When plasticity increases this slope,
the variance in fitness increases accelerat-
ing evolution; the converse occurs when
the slope decreases. The general model
focuses our attention on a key biological
aspect of plastic systems that was not pre-
viously considered explicitly.

meaningful statistics
Measurement theory requires that num-

bers only be manipulated in ways that re-
tain their representation of the empirical
relational structure of interest. Statistical
models, however, only make assumptions
about the distributional properties of the
data and can be applied to any set of num-
bers that fulfill the distributional criteria.
Consequently, statistical education and prac-
tice often recommend transformations of
the data that make the numbers fit the
statistical model. This practice often brings
measurement principles and statistical practice
into conflict. Measurement theory puts se-
vere constraints on the statistical manipu-
lations that can be done without loss of
some or all of the meaning present in the
data.

This fundamental truth has not had an
important place in the biostatistical litera-
ture, but has been the subject of consider-
able debate in psychology (reviewed by
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Hand 1996, 2004; Michell 1999). Some
hold that measurement theory is irrelevant
to statistics because the “numbers do not
remember where they came from” (Lord
1953:751), and much statistical practice in
biology seems based on this viewpoint. For
example, the discussion of transformations
in the context of ANOVA in the widely
used biostatistics textbook by Sokal and
Rohlf (1995) focuses on convincing the
reader that “the scale of measurement is
arbitrary, you simply have to look at the
distributions of transformed variates to de-
cide which transformation most closely sat-
isfies the assumptions of the analysis of
variance” (p. 412), a sentiment echoed by
others (Dytham 2003; Logan 2010). If that
is statistics, we want no part of it, as science
is about nature, not numbers. We follow
Adams et al. (1965) and define a meaning-
ful statistical statement as one whose truth is
invariant to permissible scale transforma-
tions (in the measurement-theoretic sense)
of the underlying data. The sad results of
ignoring scale during statistical analysis are
legion. For example, if we have ordinal-
scale variables, such as ranks of items, the
statement that the arithmetic mean of one
sample is larger than that of another is
not meaningful, because rankings reflect
perceived order only, whereas the act of
averaging assumes that the values reflect
magnitude. Permissible transformations
of ordinal data will usually exist that alter
the order of the means. For example, if
we have two entities in category B, and
three in category A, and the Bs are
ranked 2 and 3 out of five, then mean
rank of Bs is 2.5 while the mean rank of
the As is 3.3. Now assume that more en-
tities were included in the ranking, so
that the As are now ranked as 1, 9, and
10, and the Bs as 7 and 8, yielding a lower
mean score for category A (6.7) than for
category B (7.5). Despite the reversal of
the order of the means, both rankings are
equally valid. A mean is a meaningless sta-
tistic for ordinal variables. Wolman (2006)
pointed out that conservation biologists
make precisely this error when making rec-
ommendations based on the average of ex-

pert rankings of, for example, species vul-
nerabilities or conservation values.

Once an impermissible transformation
is used during the analysis of the data, the
aspect of reality to which the measure-
ments and the associated statistical results
apply is, by definition, changed. Similarly, non-
parametric approaches usually test a hypothe-
sis about the sample median rather than the
means. This point is often ignored in the
interpretation of the results of statistical
tests, potentially resulting in meaningless
conclusions. Sometimes transformations of
data lead to understandable changes in
meaning, as when a log transformation
maps ratio relations into difference rela-
tions and changes a log-interval scale type
into an interval-scale type, but transformations
commonly lead to fundamental changes in
the meaning of the numbers. More often
than not, such changes are not communi-
cated by the authors of the study. We pre-
sent two such examples later in this paper.
Fortunately, the generalization of statistical
models to encompass distributions other
than the normal and the rise of numerical
methods of analysis usually obviate the need
for unprincipled transformations of data. In
many cases, statistical tests are surprisingly
robust to violations of assumptions (see e.g.,
Whitlock and Schluter 2009:403). Neverthe-
less, difficult cases will remain in which the
assumptions of the available statistical analy-
ses are not met, but the transformations that
would correct the problem would divorce
the measurements from the empirical rela-
tions. Collaborations between biologists and
statisticians may be necessary in such cases.

The divorce of statistics from meaning is
perhaps most apparent when only the
qualitative results of statistical tests are
given or interpreted, ignoring the numer-
ical values of the estimated parameters. In
such cases, a nominal or ordinal conclu-
sion is drawn from estimates that are on a
much stronger scale type. For example, the
conclusion of Takahashi et al.’s (2008) study
of sexual selection in peacocks, which is
summed up in their paper’s title Peahens Do
Not Prefer Peacocks with More Elaborate
Trains, was based on a failure to reject the
null hypothesis of no selection. Their best

18 Volume 86THE QUARTERLY REVIEW OF BIOLOGY



estimate of the strength of selection was
that a peacock gained 3% more matings
for every additional eye spot in his tail. This
is extremely strong selection, three times
the strength of selection on fitness itself
(Hereford et al. 2004). The range in the
number of eyespots among males was 42,
suggesting that the peacock with the most
eyespots had an expected mating success
1.0341 	 3.4 times that of the one with the
fewest. Consideration of the estimate of
the strength of selection, rather than its
lack of statistical significance would prop-
erly lead to the conclusion that this study
lacks the power to detect even extremely
strong female preference rather than the
authors’ misleading conclusion that pea-
hens are indifferent to the plumage of pea-
cocks.

The confusion of biological with statisti-
cal significance is exceedingly common in
ecology and evolution (see, e.g., Yoccoz
1991; Anderson et al. 2000). The serious-
ness of the problem is underscored by the
more than 300 criticisms of this practice
that Anderson et al. found in the scientific
literature through the year 2000; many
more have surely accumulated by now. The
prevalence of such errors in the face of so
many efforts to prevent them indicates a
systemic problem; we believe the problem
is the lack of awareness of what measure-
ment theory tells us about the meaning of
numbers. Biologists accept P-values as mea-
sures of effects for the same reason that
they commonly neglect to report and con-
sider units and transformations. The skill
of interpreting numbers is neither taught
nor practiced: too often quantification is
window dressing for qualitative arguments.

Measurement theory is a description of
what meaningful quantification entails. It
is precisely the medicine needed to restore
meaning to statistical practice. Fulfilling
the assumptions of the statistical model is
important, but it is by itself useless if the
statistical model does not respect the em-
pirical content of the data.

Measurement in Biological Practice
The principles we have outlined above

are so near to platitudes that it may seem

odd that we think them worth emphasiz-
ing. There are, however, numerous exam-
ples of errors arising from violations of
these principles—sometimes for represen-
tational errors, but just as frequently for
simple conceptual errors that lead to irrel-
evant measurements. Even more troubling
is that the perceived best practice in a par-
ticular field may incorporate a measure-
ment error that renders an entire class of
studies meaningless. We present a sam-
pling of such errors here.

example 1: remember context
The actual theoretical context and the

measurements performed can sometimes be
mismatched. The most spectacular errors of
this type occur when the investigator loses
track of the theoretical context that is the
ostensible purpose of a study. A striking ex-
ample of this can be found in much recent
work on the evolution of allometry. Julian
Huxley (1924, 1932) introduced allometry as
a simple scaling relationship between a trait,
Y, and overall body size, X, as a power law,
Y � aXb, which is usually and more conve-
niently expressed as the linear relationship
log(Y) � log(a) � b log(X). Empirically,
such linear log-log relations are common
both within species (static allometry) and be-
tween species (evolutionary allometry). Hux-
ley showed that static allometries between
two traits will result when they are under
common growth regulation, and the idea
that evolution may be constrained to follow
static allometries has received considerable
attention (e.g., from Gould 1977). On the
basis of his model, Huxley (1932:5–6) felt
that the intercept log(a) was “of no particu-
lar biological significance,” but the expo-
nent, b, “has an important meaning.”
Indeed, in physiology, biomechanics, and
life-history theory much theoretical and
empirical work has gone into establishing
the exact value of the allometric exponent
for different traits (e.g., Schmidt-Nielsen
1984; Charnov 1993). When the overall re-
lationship between size and another trait
varies, the intercept is usually far more vari-
able than the slope (Teissier 1936; White
and Gould 1965; Jerison 1969; Greenewalt
1975; Dudley 2000).
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Although many authors follow Huxley’s
conception of allometry as “the slope of
a . . . log-log regression of the size of a
structure on body size” (Eberhard 2009:
48), some have adopted a “broad” sense of
allometry as “[c]hanges in shape which ac-
company change in size” (Mosimann 1970:
930). In this usage, all kinds of nonlinear
and even sigmoid and discontinuous
(threshold) relationships are referred to as
allometric (Frankino et al. 2010). Thus,
broad-sense allometry is essentially synony-
mous with shape and, therefore, without
precise connection to any of the theoreti-
cal models that have motivated the interest
in the allometric slope as an important
evolutionary constraint, whether Huxley’s
hypothesis of common growth regulation
or more sophisticated models from physi-
ology, biomechanics, or life-history theory.

Several investigators over the last 20
years have claimed to alter allometry by
artificial selection on trait indices (Weber
1990, 1992; Wilkinson 1993; Frankino et
al. 2005, 2007). Unfortunately, they make
only passing reference to the theoretical
concepts that have defined the interest of
allometry to biology. None, for example,
log-transformed their data. The study by
Frankino et al. (2005) is illustrative. The
title of the study, the abstract, and the text
formulate the problem as explaining the
conservatism of “allometry” or “scaling re-
lationships,” but include no discussion of
specific allometric models. The implica-
tion, for those familiar with the usual con-
ception of allometry as slope on a log-log
scale, is that the study will be about the
evolution of this slope. In their experi-
ment, Frankino et al. (2005) sought to al-
ter wing loading, the relationship between
wing area and body mass, in the butterfly
Bicyclus anynana. To do so, they selected
for increased or decreased individual devi-
ations from the major axis of variation be-
tween forewing area and body mass. They
achieved statistically significant responses
in this index.

What do these results mean for allome-
try, the stated subject of the study? The
answer is entirely unclear, because the type
of selection used by Frankino et al. will

favor changes in both intercept (log(a))
and allometric coefficient b. The only win-
dow through which the reader can assess
the nature of the responses is in a figure
(Frankino et al. 2005, Figure 2A) that pres-
ents the distributions at the end of the
experiment on an arithmetic scale. No
analyses are made on the log scale, how-
ever, and no attempt to determine whether
the differences are in the slope or the in-
tercept. The theoretical context of allome-
try is not incorporated into the design or
analysis of this study, despite the author’s
invocation of the concept of allometry.

All of these experiments (Weber 1990,
1992; Wilkinson 1993; Frankino et al. 2005,
2007) alter something about the relationship
between traits and clearly demonstrate that
body shape shows genetic variation, a
valuable conclusion. All of them invoke
the concept of allometry, but how to in-
terpret their results in terms of allometry
is perfectly ambiguous. One extreme in-
terpretation is that all of the response is
in the parameter a, suggesting that, con-
trary to the conclusions of these papers,
the allometric slope is constrained by a
lack of genetic variation. A second inter-
pretation is that some part of the response is in
the exponent b and that natural selection can
indeed reshape allometric relationships easily.

Meaning is lost in this class of studies
because a theoretical context is invoked
but then ignored. The design of these ex-
periments precluded testing the claim that
allometry can readily be altered, because
the measurements and analyses did not re-
flect hypotheses about allometry. This is an
error in specifying the attribute of interest
as any aspect of the relationship between
pairs of traits rather than as the slope of
their relationship measured from log-
transformed data.

example 2: do not use a rubber ruler
Consider an animal foraging in an envi-

ronment containing two equally common
types of resource patches, where one type
of patch has twice the payoff of the other.
The animal chooses one patch at random
and finds it has payoff x, but it cannot tell
whether it is a good or a bad patch. Should
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it then switch patches? If it switches, it has
a 50% chance of encountering the same
payoff x but also a 50% chance of encoun-
tering a different payoff. In the case in
which the payoff is different, the chances
are equal that the new patch will have twice
the value (2x) or half the value (x/2) of the
original patch. From optimal foraging the-
ory, we might then argue that the animal
should switch patches, because the ex-
pected payoff for the new patch would be
2x�1/2�x/2�1/2 � 5x/4 � x. Notice that
this conclusion would be the same whether
the animal chose the good patch or the
poor patch on the first attempt. The grass
is always greener on the other side!

This conclusion is clearly absurd, but
identifying the error is not trivial. The
cause is failure to adopt a common scale.
To see the problem, first define the payoff
in the poor patch as z and that in the better
patch as 2z. In terms of this fixed scale, we
easily see that the payoff of the first patch is
x1 � 2z�1/2 � z�1/2 � 3z/2, whereas the
payoff of the second is x2 � z�1/2 � 2z�1/
2 � 3z/2, giving the obviously correct an-
swer that x1 � x2. With this definition in
mind, we can return to the first equation,
and diagnose the problem; x is used to
equal both z and 2z in the same equation.

This example, derived from the enve-
lope paradox in probability theory (Hand
2004), illustrates the dangers of a lack of
awareness of scale. In fact, scales that de-
pend on the entity to be measured are
common in evolutionary biology. The use
of heritability to measure evolutionary
potential is one important example. We
can define short-term evolvability as the
expected response to a given selection gra-
dient (Houle 1992; Hansen et al. 2003;
Hansen and Houle 2008), and under cer-
tain assumptions it equals the additive ge-
netic variance (Lande 1979). To compare
additive variances across traits and popula-
tions, we need a common scale. The stan-
dard practice has been to use the trait’s
population variance as the scaling unit. Di-
viding the additive variance by the popula-
tion variance yields the heritability, h2,
which is a dimensionless number. Note,
however, that the population variance con-

tains the additive variance as a component
and, furthermore, that its other compo-
nents, such as epistatic and environmental
variances, tend to be correlated with the
additive genetic variance (Houle 1992).
Therefore, when heritabilities are used for
comparison of evolvability across traits and
populations, we use a scale that depends
strongly on the entity to be measured. The
naive use of h2 as a measure of evolutionary
potential has lead to some highly dubious
generalizations, such as the idea that life-
history traits and fitness components are
less evolvable than morphological traits
(see, e.g., Roff and Mousseau 1987). Houle
(1992, 1998; Houle et al. 1996) proposed
using a mean-standardized scale (such as a
coefficient of variation or its square IA) be-
cause it is not necessarily a function of the
attribute to be measured; on this scale, the
lower h2 of life-history traits is clearly due to
high levels of environmental variance. The
use of the variance-standardized scale gives
a misleading conclusion for reasons strik-
ingly similar to the one that generates the
patch paradox. The naı̈ve expectation that
evolvability can be measured equally well
by either h2 or mean-standardized additive
variance is wrong; in fact they are almost
uncorrelated (Houle 1992).

In this case, the measurement error is in
selecting an attribute to measure, h2, that is
unsuited to the theoretical context. Heri-
tability is unsuitable because it standard-
izes a quantity of interest with something
to which it is autocorrelated. This example
shows that meaning is drastically altered by
seemingly innocent choices of scale. The
choice of scale is a fundamental and non-
trivial part of both model building and sta-
tistical estimation. A lack of awareness of
such issues is a major source of misreport-
ing and misinterpretation of biological re-
sults.

example 3: interpret your numbers
Yet another way of robbing a study of

meaning is to fail to specify a theoretical
context. A good example is Kingsolver et
al.’s (2001) paper, The Strength of Pheno-
typic Selection in Natural Populations.
One of their conclusions was that “direc-
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tional selection on most traits and in most
systems is quite weak” (p. 253), yet King-
solver et al. never specified a theoretical
context that would help to determine the
strength of selection. As pointed out by
Conner (2001), this omission leaves read-
ers wondering whether selection is really
strong or weak.

Kingsolver et al. reviewed a large sample
of the available estimates of linear selec-
tion gradients obtained in wild popula-
tions (Lande and Arnold 1983; Endler
1986). The linear selection gradient mea-
sures the change in relative fitness for a
unit change in the value of a trait. They
followed Lande and Arnold (1983) in
adopting the unit of trait standard devia-
tion as the basis for comparison across dif-
ferent traits and populations. Despite the
claim about weak selection in the abstract,
the text of the paper contained just two
brief statements about selection strength,
on pages 250–251 and 253. The median
strength of selection of 0.16 is termed
“rather modest,” and values greater than
0.5 are “very strong,” but no discussion is
included of criteria for deciding what con-
stitutes strong or weak selection. Their ar-
gument for the rarity of strong selection is
instead based the approximately exponen-
tial distribution of the absolute values of
the gradients with a mode at 0. This
change of emphasis from that implied by
the title and abstract is made explicit in the
Methods section, where Kingsolver et al.
state “the overall ‘average’ strength of se-
lection is unlikely to be very informative.
We focus our analyses on the distributions
of selection strengths” (p. 248). The con-
clusion drawn from this analysis would be
more accurately stated as “most selection
estimates are much smaller than the ex-
treme estimates.”

With respect to the strength of selection,
therefore, Kingsolver et al. (2001) imply
that they have a theoretical context, but
then decline to apply any theory or con-
cepts related to the units of measurement.
Symptomatic of this problem is that the
units of measurement, although clearly
stated in the Methods section, are never
attached to any of the actual measure-

ments in the paper. If the units are
stated, Kingsolver et al. (2001) state-
ments that the median strength of selec-
tion, a 16% change in relative fitness with
a one-standard-deviation change in the
trait, is modest, whereas a change of 50%
with a one-standard-deviation change is
very strong selection, sound rather con-
tradictory.

Clearly, for comparison of the strengths
of selection on different traits in different
organisms, some standard scale must be
adopted, but which scale? Hereford et al.
(2004) proposed two criteria for judging
the strength of selection and showed that
each is naturally addressed on a different
scale. Under frequency-independent selec-
tion, the strength of selection is naturally
viewed as a function of the adaptive land-
scape, which is external to the population
subject to selection. Keeping this theoreti-
cal context in mind makes clear that stan-
dardizing the selection gradient by the
trait standard deviation has problems sim-
ilar to those of basing a measure of evolv-
ability on heritability. To get at this con-
cept of the steepness of the adaptive
landscape in the neighborhood of the pop-
ulation, the variance-standardized measure
immediately requires a second measure of
the variation in the trait and in fitness itself
to reveal whether a large value of the stan-
dardized gradient is due to a steep land-
scape in a population with small variation
or to a population with a large amount of
variation on a relatively flat landscape.

Hereford et al. (2004) instead standard-
ized the selection gradient by the trait mean,
which gives the change in relative fitness for
a proportional change in trait. On a mean-
standardized scale, the strength of selection
on fitness itself is one, providing a bench-
mark for strong selection (Hansen et al.
2003). Hereford et al. (2004) showed that
the median mean-standardized selection gra-
dient was 0.31, or 31% of the strength of
selection on fitness, and on this basis con-
cluded that the results were “notable for
the extremely strong selection observed”
(p. 2141).

As noted above, however, an alternative
idea of strength of selection could be based
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on the change of fitness within the range of
the population—that is, strong selection oc-
curs when the expected fitnesses of individ-
uals within the population are typically very
different (Hereford et al. 2004). In this the-
oretical context, a variance-standardized
ruler is no longer rubber, but tells us just
what we need to know. For example, in a
population with a range of phenotypes of
four standard deviations (readily found
within a normally distributed population
of modest population size), the median
variance-standardized selection gradient
from Kingsolver et al. (2001) of 0.16 pre-
dicts that a typical least-fit individual two
standard deviations below the mean has a
fitness only 52% that of the typical most-fit
individual, two standard deviations above
the mean. This again sounds like strong
selection, contrary to the conclusions of
Kingsolver et al. (2001), but for completely
different reasons than in the mean-
standardized case. Which scale is used re-
ally does matter: if the fitness landscapes
were left unchanged, but the traits studied
had much smaller coefficients of variation,
the differences in fitness on a variance-
standardized scale would also have been
much smaller.

example 4: respect scale type
Fitness is one of the most fundamental

quantitative concepts in biology. It predicts
the evolutionary outcome of competition
among genotypes or phenotypes for repre-
sentation in the next generation. Two
types of fitness measures are commonly
used in biology, Wrightian fitness w and
Malthusian fitness m. Wrightian fitness nat-
urally arises in models where changes in
gene or genotype frequencies are pre-
dicted by the equation

p
 �
pw
w

,

where p is the relative frequency of a geno-
type before selection, p
 the frequency after
selection, and w the mean fitness of the pop-
ulation. The biological meaning of Wright-
ian fitness is contained in the ratio of fitness
measures, as reflected in the use of “relative

fitness” in population genetic theory. Wag-
ner (2010) showed that Wrightian fitness,
w, is a ratio-scale measure under the as-
sumption that the time scale is fixed. We
relax this assumption here because conclu-
sions about fitness can be drawn on any
time scale. Fitness, therefore, becomes a
log-interval-scale variable, as the conclu-
sions are invariant to power transforma-
tions of fitness, so we are equally entitled to
draw conclusions about two or more epi-
sodes of selection. In this case, the expo-
nent is determined by the time scale. The
result of selection is therefore invariant to
a transformation: w3 awb, a, b � 0, but not
to the transformation w 3 w�c.

The Malthusian parameter m measures fit-
ness in continuous time. If the age structure
of the population is stable, the instantaneous
rate of change in genotype frequency is
given by the Crow-Kimura differential equa-
tion:

ṗ � p�m � m�.

The Malthusian fitness measure m is ap-
proximately related to Wrightian fitness
(under weak selection) by m � ln w. In this
case, the biological meaning of the fitness
measures is contained in the differences of
the fitness values, rather than the ratios,
and thus m is an interval-scale variable. The
permissible scale transformations are there-
fore of the form m 3 am � b, where a
determines the change in time scale. This
conclusion is of course unsurprising as m is
the log of w and w is a log-interval-scale
variable. A somewhat counterintuitive con-
sequence of this mathematical fact is that
only the differences between ms have evo-
lutionary meaning; neither the sign nor
the absolute magnitude is meaningful for
evolution, although they have ecological
meaning as growth rates.

The difference in scale types of fitness
measures has important consequences in
experimental practice that have not al-
ways been respected. An example of the
problem arises in Remold and Lenski’s
(2001) study of the causes of genotype-
by-environment interaction in Escherichia
coli. Remold and Lenski studied the ef-
fects of single mutations on fitness when
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bacteria were grown in different environ-
ments. They used a fitness assay in which a
mutant strain, M, competed against a stan-
dard strain, S, starting at low density and
equal frequencies of the two genotypes
(Lenski 1988). They estimated the initial
and final frequencies by spreading sam-
ples on agar plates and recording the
number of colonies of each type. These
counts are used to estimate the Wright-
ian fitness of genotype x as N
x/Nx � wx

where Nx is the initial count and N
x is the
final count. To estimate the Malthusian
fitness, m, Remold and Lenski treated the
changes in bacterial density as the result
of an exponential growth process

Nx�t� � Nx�0�emt

(Lenski 1988). One can therefore use the
counts of bacterial cultures Nx and N
x to
estimate m for each genotype as

ln�N
M

NM
� � ln�wM� � mM

.

ln�N
S

NS
� � ln�wS� � mS .

Recall that the biological meaning is in
the magnitude of the difference, mM � mS,
rather than in their ratios. Remold and
Lenski (Lenski et al. 1991; Remold and
Lenski 2001), however, took their ratio to
define a “relative fitness”:

fM,S �
mM

mS
.

The measure fM,S is still a measure of rela-
tive fitness in the sense that, if genotype M
has higher fitness than S, then fM,S�1, and
if a third genotype R has higher fitness
than M, then fR,S�fM,S. This measure pre-
serves the order of fitness values between
genotypes and can therefore be used as an
ordinal-scale variable, but the magnitude
of these fM,S values has no biological mean-
ing. This problem is largely innocuous if
fM,S values are used only to test for the
existence of differences in fitness in a sin-
gle environment, say between an ancestral
and a derived genotype, but fM,S does not

measure the magnitude of the fitness dif-
ference and is therefore meaningless when
we compare fitness in different environ-
ments, as Remold and Lenski (2001) did.

To make the problem concrete, imagine
experiments where genotypic fitnesses are
measured in only two environments and
the fitnesses of the two genotypes in the
environments are different, mM�1  mM�2

and mS�1  mS�2. First assume that the differ-
ences between the fitness values in the two
environments are the same, mM�1 � mS�1 �
mM�2 � mS�2, so that the allele frequencies
follow exactly the same trajectory in both
environments. If we compare the alternative
relative fitness measures based on ratios of
ms, we find that fM,S�1  fM,S�2, erroneously
suggesting the presence of genotype-by-
environment interaction. For example, if we
assume that the Malthusian fitnesses are
mM�1 � 0.02, mS�1 � 0.03, mM�2 � 0.01, and
mS�2 � 0.02, the fitness differences within
each environment is 0.01, and genotype and
environment do not interact because selec-
tion proceeds exactly the same in each envi-
ronment. Using these numbers, however,
fM,S�1 � 2/3 and fM,S�2 � 1/2, leads us to con-
clude that a genotype-by-environment inter-
action is present. If, on the other hand,
mM�1 � 0.015, mS�1 � 0.03, mM�2 � 0.01, and
mS�2 � 0.02, the ratios are constant, leading
one to infer an absence of interactions, when
the differences show a true genotype-by-
environment interaction. Using this approach,
Remold and Lenski (2001) concluded that no
evidence supported genotype-by-environment
interactions involving temperature, but that in-
teractions involving the type of carbon re-
source offered were abundant. Neither of
these conclusions is justified.

Remold and Lenski (2001) came to mean-
ingless conclusions because they used ratios
to interpret data on an interval scale type.
Respect for scale type is essential for draw-
ing inferences about an empirical system
from the measurements obtained by exper-
iment. In this case, the actual measure-
ments were appropriate to the question,
and the measurement error came from a
mismatch between the summary statistic
chosen and the scale type.
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example 5: do not let statistics
overrule meaning

An example of the conflict between sta-
tistics and meaning is a study of the rela-
tionship between morphological diver-
gence and divergence in genetic variance
matrices performed by Podolsky et al.
(1997). The theoretical context for this
study is the prediction of longer-term evo-
lutionary potential from estimates of the
within-population genetic variation. That
genetic variation is summarized in a ma-
trix, G, which contains the additive genetic
variances for each traits and the covari-
ances between them. The Lande model
(Lande 1979) predicts how variation af-
fects divergence over many generations if
G remains sufficiently stable over the rele-
vant time scale. The question of whether
stability is expected or observed is still
largely unresolved (Steppan et al. 2002;
Arnold et al. 2008), as G matrices are com-
plex objects that are difficult to estimate
precisely. The Podolsky et al. study was a
relatively early attempt to address this ques-
tion in a maximum-likelihood framework
and had a positive impact by highlighting
the problems of statistical power in such
studies.

Podolsky et al. (1997) compared popu-
lation means and G matrices for lengths of
nine structures in 11 populations of the
plant Clarkia dudleyana. They judged dis-
parity between matrices using the average
squared difference between their ele-
ments. Divergence between populations
was measured as Mahalanobis distance, D2,
which is the distance in variance units in
the direction between the two samples in
multivariate space. The problematic aspect
of their analysis is that they used a wide
variety of transformations of the underly-
ing data before estimating the G matrices;
five of the nine lengths were untransformed,
three were square-root transformed, and one
was transformed as y � ln(ln(x) � 1). Podol-
sky et al.’s (1997) stated goal in choosing
transformations was to transform “to nor-
mality as feasible” (p. 1787). Departures
from normality can cause serious estima-
tion problems for maximum-likelihood

algorithms based on the Gaussian likeli-
hood, and the transformations therefore
have a good statistical justification given
that the method of analysis is tailored to
normally distributed data.

On the other hand, transformations also
alter the relationships between means and
variances, which were the subject of Podol-
sky et al.’s (1997) analysis. Equalization of
variances among groups in an ANOVA is
an alternative reason for choosing particu-
lar transformations and one that most stat-
isticians regard as more important than
transformation to normality. For example,
size, such as the lengths of body parts used
in this study, are often approximately log-
normally distributed, so variance and cova-
riances scale with the mean on the linear
scale, but would be independent on the
log scale. By choosing a variety of transfor-
mations of the variables with regard to nor-
mality of residuals, Podolsky et al. altered
the mean-variance relationships that they
wished to study in different ways for differ-
ent traits. These transformations affected
both the distance used to judge divergence
of means and the estimates of G whose
disparity was predicted. Calculated from
the transformed data, D2 combined data
from many incompatible scales, rendering
any test of mean-variance relationships
meaningless; if different transformations
had been applied, the results could very
well have been different (Adams et al.
1965).

We do not mean to suggest that no trans-
formations should ever be used. A com-
mon and principled type of transformation
would be to log transform all of the data,
converting to a different but equally valid
scale type (interval or difference), where
differences play the role of ratios on the
original scale. In other theoretical con-
texts, transformations to still other scales
would be appropriate. For example, if the
investigator had valid reasons to believe
that natural selection had a simple rela-
tionship with the square root of length,
square-root transformation would be justi-
fied in a study of natural selection. Rarely,
however, are such empirically based argu-
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ments offered for the use of anything other
than a logarithmic transformation.

Transformations very frequently change
the scale type and, therefore, the meaning
of measurements. In many cases, the result
is meaningless tests of hypotheses. In this
case, the error was a general one of com-
paring quantities that were incommensu-
rate because transformation placed them
on different scales.

example 6: treat measurements as
measurements

An exceedingly common measurement
error in biology is the neglect of units,
which changes the carefully gathered mea-
surements into a mere set of numbers. This
error is obvious to the prepared mind
when a table of naked numbers is shame-
lessly paraded in front of us. Sometimes
the units of each measurement can be di-
vined, by laborious shuffling from methods
to appendices to tables to results, but this is
a chore no reader should be subjected to.
A deeper symptom of the insidious neglect
of units is evident from the curious case of
quadratic selection gradients.

Lande and Arnold (1983) showed that
the relationship between fitness and trait
values could be approximated from linear
and quadratic regression coefficients. If z is
the deviation of an individual trait from
the population mean, then the Lande-
Arnold model rewrites relative fitness as

w � � � �z �
1
2

�z2 � 	

where � is mean fitness and 	 is residual
variation. Extension to the multivariate
case is straightforward. The linear gradi-
ent, �, is necessary for prediction of the
short-term response of the mean to natural
selection, whereas the more complete de-
scription of the selection surface including
� is important for understanding how vari-
ance is changed by selection (Lande 1980),
for visualizing the selective surface (Phil-
lips and Arnold 1989), and for understand-
ing whether the one-generation prediction
of the response to selection is likely to hold
over longer time scales. The quadratic ver-

sion of the Lande-Arnold model has been
widely used. Kingsolver et al. (2001) found
573 estimates of � in a sample of 63 studies,
and Stinchcombe et al.’s (2008) much
more limited survey of one journal from
2002 through 2007 turned up 32 addi-
tional studies with 673 estimates of �.

Surprisingly, Stinchcombe et al. (2008)
discovered that the majority of published es-
timates of univariate � were off by a factor of
2. The source of this error is that two differ-
ent models are used in the Lande-Arnold
approach: conceptually, Lande and Arnold
(1983) preferred to think of the average cur-
vature of the selective surface around the
population mean and so defined the param-
eter � as the second derivative of the fitness
landscape; fitness is a function of (1⁄2)�. On
the practical side, Lande and Arnold showed
that the multiple regression of trait values on
relative fitness can be used to estimate the
parameters � and � in the above model.
Regression models are parameterized

w � � � bz � qz2 � 	,

so that, although b��, q�1/2�. Stinch-
combe et al. (2008) estimated the pro-
portion of studies that reported q as � by
asking the authors of a sample of papers
how they calculated �. A stunning 78% of
the authors reported using q as �.

How is it that hundreds of papers con-
taining thousands of estimates can be pub-
lished over 27 years before anyone notices
that the majority of the estimates are
wrong? The answer seems to be a systemic
lack of respect for measurement and mod-
els in biology. Despite the wide use of the
Lande-Arnold method, the interest of most
users has been in determining whether lin-
ear or quadratic selection can be detected
by a statistical test for selection, not in the
actual strength or shape of selection. Ex-
ceedingly few authors have used the
Lande-Arnold parameters � or � to make
predictions about evolution or variation,
and even fewer have tried to test those
predictions (for exceptions see Postma et
al. 2007). The numerical estimates have
served a mainly decorative purpose.

Biology is in general poised between be-
ing a descriptive, qualitative science and a
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quantitative one. Many questions have only
qualitative answers: Is this organism known
to science or undescribed? Which piece of
land should be purchased to further con-
servation goals? Other attributes of nature
may productively be treated as qualitative,
even though underlain by quantitative re-
ality. For example, knowing whether we
can reject the idea that a particular bit of
DNA is evolving at the neutral rate is use-
ful. Consequently, we sometimes forget
that there are cases where quantity matters,
such as quadratic selection gradients. The
lack of attention to the definition of � has
damaged the meaning of 20 years of pub-
lished estimates. This problem matters.
Stinchcombe et al. demonstrated that this
numerical error can suggest that multivar-
iate fitness landscapes have a shape quali-
tatively different from their real one. Many
hypotheses about the maintenance of ge-
netic variation depend on the actual value
of � (see, e.g., Turelli 1984).

example 7: know what your
parameters mean

Our final two examples are cases where
parameters of models are assigned a mean-
ing that they do not actually have. A good
example is the idea that negative genetic
correlations were the necessary conse-
quence of an evolutionary theory of limits
on life history, which somehow became
widespread during the 1980s (see, e.g., Bell
and Koufopanou 1986). This misconcep-
tion occasioned considerable debate and
additional experiments when the data did
not conform to this expectation (see, e.g.,
Rose 1984; Reznick 1985). The entire con-
troversy rests on a misinterpretation of
what a genetic correlation, and the genetic
covariance it standardizes, means. Genetic
covariance quantifies the degree of depen-
dence of one trait on another. No discontin-
uous change in the response to selection
accompanies a change in sign of a genetic
correlation (Via and Lande 1985; Charles-
worth 1990; Houle 1991; Fry 1993). When
the covariance goes from negative to posi-
tive, the correlated effects of selection simply
go from slightly negative to slightly positive.
Instead, the conclusion that tradeoffs are not

perfect (because correlations are ��1)
should have been apparent from the be-
ginning. Half a generation of biologists
working on the genetics of life histories
spent too much of their time worrying that
their estimates of correlations were not
negative enough because some referred a
reasonable hypothesis (that tradeoffs are
important) to an irrelevant attribute (the
sign of the genetic correlation). The hy-
pothesis of constraint directly predicts a
boundary beyond which fitness cannot
evolve. It does not predict genetic correla-
tions without subsidiary assumptions, such
as a lack of deleterious mutations.

example 8: make meaningful measures
One of our roads to discovering mea-

surement theory came through a desire
to represent the evolutionary effects of
epistasis (Wagner et al. 1998; Hansen
and Wagner 2001b). Fisher’s definition
of additive effects has proven extremely
fruitful because it was defined to quantify
the importance of parent-offspring re-
semblance in the response to selection.
In contrast, the statistical measures of
gene interaction (Fisher 1918; Cockerham
1954; Kempthorne 1954)—dominance vari-
ance, additive-by-additive variance, and
additive-by-dominance variance, among oth-
ers—have not proven useful for understand-
ing of the dynamical role of gene interaction in
evolution because they represent a statistical
measure of departures from simpler models in
an ANOVA framework rather than a measure
of the dynamical consequences of epistasis. In
spite of this, the use of statistical measures of
epistasis has persisted over many years because
these were for a long time the only measures of
epistasis that had been suggested. As a result,
when biologists wished to study the interesting
phenomenon of epistasis, for example, in-
spired by Wright’s shifting balance theory, they
naturally turned to the statistical measures,
even in the absence of explicit theory to justify
their relevance. As a result, the statistical mea-
sures of epistasis have been assigned various
meanings that they do not possess, with effects
similar to the case of the sign of genetic corre-
lations. For example, the “statistical” conceptu-
alization excludes systematic directional effects
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by definition and has lead to the widespread
but incorrect notion that the influence of epis-
tasis on the dynamics of quantitative characters
under selection can be ignored (see Carter et
al. 2005; Hansen et al. 2006; Pavlicev et al.
2010). The only explicit dynamical role sug-
gested for statistical epistatic variance was that it
could be converted to additive variance by ge-
netic drift during population bottlenecks and
thus boost evolvability during founder events
(see, e.g., Goodnight 1987; Cheverud and
Routman 1996). This interpretation is mislead-
ing because, although epistasis causes additive
effects to change when allele frequencies
change, the increase in additive variance is not
proportional to any decrease in epistatic vari-
ance components (Barton and Turelli 2004).
The change in additive variance under genetic
drift depends strongly on the pattern of epista-
sis and the additive variance may even decrease
in expectation under some kinds of epistasis
(Hansen and Wagner 2001b).

Seeing this, however, required defining
new measures of epistasis that capture dy-
namically important properties. A non-
statistical representation of epistasis had
been proposed by Cheverud and Routman
(1995), and Wagner et al. (1998) followed
this proposition by defining epistasis in
terms of changes in the effect of allele
substitutions with changes in the genetic
background (i.e., substitutions at other
loci). Hansen and Wagner (2001b) devel-
oped the multilinear representation of the
genotype-phenotype map along these lines
and showed how the new representation of
epistasis can be related to the statistical
representation used in quantitative genet-
ics (for further development see Álvarez-
Castro and Carlborg 2007). Using this
model, we could show how different patterns
of epistasis affect evolutionary dynamics
(Hansen and Wagner 2001a,b; Hermisson
et al. 2003; Carter et al. 2005; Hansen et al.
2006; Fierst and Hansen 2010). An impor-
tant result is that epistasis can accelerate a
response to selection in the presence of a
systematic pattern of positive interactions
between the effects of substitutions at dif-
ferent loci. Conversely, a systematic pat-
tern of negative interactions leads to ca-
nalization. Carter et al. (2005) identified

a “directional” epistatic parameter that
measures these effects. This directional
parameter is dynamically meaningful in a
way similar to that of Fisher’s additive
effect and additive variance. It captures
the second-order effect of evolutionary
changes in the additive effects, as shown
in Figure 3.

What Can We Do?
The problems that we have described

are widespread in biology. We have cho-
sen examples mostly from the evolution-
ary biology literature because that is our
own area of expertise, and those areas
are the ones in which we can more con-
fidently diagnose the issues raised by
each example. We strongly suspect that
ecologists, for example, will find similar

Figure 3. Effect of Pairwise Epistasis on
response to Directional Selection

Each trajectory is the mean of 100 replicate
individual-based simulations; the bars show � 1 S.E.
The error bars are smaller than the symbols for most
of the cases. Each simulation models populations of
1000 individuals with 20 loci influencing a single trait
with identical allele frequencies and allelic effects
that furnish an initial additive genetic variance of 1.0.
Mutation is absent. Populations were subjected to 100
generations of positive directional selection of
strength 1% change in relative fitness per trait unit.
Directional epistasis is defined as in Carter et al.
(2005), where 
	 is the mean strength of directional
epistasis, and �	 is the standard deviation of the di-
rectional epistasis between pairs of loci. The four
cases shown are: No epistasis 
	 � 0, �	 � 0; Nondi-
rectional epistasis 
	 � 0, �	 � 1.41; Positive epistasis

	 � 1, �	 � 1; and Negative epistasis 
	 � �1, �	 � 1.
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problems with the measurements meant
to instantiate such concepts as popula-
tion size, density dependence, interac-
tion strength, and productivity (see, e.g.,
Wulff 2001; Vik et al. 2004).

Some readers may feel that our exam-
ples are simply unfortunate isolated errors
by individual researchers. Such errors are
common, but ultimately inconsequential
because of the self-correcting nature of sci-
ence. We emphasize that the examples we
discuss are symptomatic of systemic errors that
reflect widely held beliefs and attitudes. Many
of our examples involve highly competent, in-
deed leading, researchers, and the problems
are repeated in many other studies. For exam-
ple, the much-criticized errors in Harvey and
Clutton-Brock’s (1985) compilation of primate
body-size data might be treated as their respon-
sibility alone, but Smith and Jungers (1997)
traced the way these data were transferred
from source to source and often lost their
meaning and context along the way. Eventu-
ally, in their final destination, the result was
absurdities such as assigning six “means” to
males and females of three species of Ateles
on the basis of what were originally mea-
surements from a total of three individuals.
The shortcomings and errors by Harvey
and Clutton-Brock (1985) arose because
the “means” were repeatedly presented
without standard errors, sample sizes, or
references to original sources, and the er-
rors were thus allowed to propagate (Smith
and Jungers 1997). This case is a scandal
because of the long chain of authors who
succumbed to the temptation to use data
without checking original sources, and
all of the reviewers and editors who did
not object. Similarly, the ideas that the
sign of genetic correlations was an impor-
tant attribute and that heritability predicts
evolvability became problematic not when
the first author made this claim, but as the
number of those who accepted the incorrect
premise grew; these are systemic problems.

A related objection is that our extension
of measurement theory to incorporate the
theoretical context and hypothesis genera-
tion is not helpful because we are discuss-
ing “good science, clear thinking, or an
appreciation for the subtlety of an argu-

ment”—things that good scientists already
know and value. We agree that this is pre-
cisely what we are doing, but disagree that
taking a measurement-theory stance is not
helpful. We have known for years about
many of the examples we discuss above,
but we find that the terminology and mind-
set of measurement-theoretic thinking al-
low us to diagnose and discuss common
features of these cases that combine to
make them examples of flawed or useless
science. For example, we find clarifying the
ability to declare that using the sign of a
genetic correlation to indicate whether a
tradeoff exists is an attribute error. Our
claim is not that conceptual measurement
theory is revolutionary, but that it aids
clear thinking about good science.

The most practical counterweight to the
many possible pitfalls that accompany the
task of measurement is awareness. If our
experience is any indication, as soon as
one becomes explicitly aware of measure-
ment as a discrete topic, much unsatisfac-
tory science is readily diagnosed in those
terms. In this way, measurement theory
can become a routine background to read-
ing and reviewing the literature, discussing
it with colleagues, and designing research
strategies. Once a culture of thinking
about meaning and measurement is in
place, many of the types of errors that we
have documented will be more readily
avoided during the design and analysis of
experiments, caught by reviewers before
they are published, or quickly noticed
when they are.

A second way to address the measure-
ment problem is through education. Most
graduate programs include a required
background of at least one course in statis-
tics, but we have never come across a
course in meaningfulness or even measure-
ment theory—it is curious that so little ef-
fort is spent learning what our conclusions
might mean, but substantial effort is spent
on how to quantify those conclusions. We
hope that someday the theory of measure-
ment and meaning will have its place in
scientific education alongside, and as a
partial counterweight to, statistics. Looking
farther down the road, if explicit measure-
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ment theory takes root in biology, we can
look forward to a time when a backlog of
well-studied biological examples will be
available as a familiar entrée to the study of
measurement and meaning.

In the meantime, we offer a modest list
of measurement principles as an aid to
thinking about both good and bad mea-
surement:

1. Keep theoretical context in mind.
2. Honor your family of hypotheses.
3. Make meaningful definitions.
4. Know what the numbers mean.
5. Remember where the numbers come

from.
6. Respect scale type.
7. Know the limits of your model.
8. Never substitute a test for an estimate.

9. Clothe estimates in the modest raiment
of uncertainty.

10. Never separate a number from its unit.
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