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Abstract 20 

We explore the estimation of uncertainty in evolutionary parameters using a recently devised 21 

approach for resampling entire additive genetic variance-covariance matrices (G).  Large sample 22 

theory shows that maximum likelihood estimates (including restricted maximum likelihood, 23 

REML) asymptotically have a multivariate normal distribution, with covariance matrix derived 24 

from the inverse of the information matrix, and mean equal to the estimated G.  This suggests 25 

that sampling estimates of G from this distribution can be used to assess the variability of 26 

estimates of G, and of functions of G.  We refer to this as the REML-MVN method. This has 27 

been implemented in the mixed model program Wombat. Estimates of sampling variances from 28 

REML-MVN were compared to those from the parametric bootstrap and from a Bayesian 29 

Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). 30 

We apply each approach to evolvability statistics previously estimated for a large, 20-31 

dimensional data set for Drosophila wings. REML-MVN and MCMC sampling variances are 32 

close to those estimated with the parametric bootstrap.  Both slightly underestimate the error in 33 

the best-estimated aspects of the G matrix.  REML analysis supports the previous conclusion that 34 

the G matrix for this population is full-rank. REML-MVN is computationally very efficient, 35 

making it an attractive alternative to both data resampling and MCMC approaches to assessing 36 

confidence in parameters of evolutionary interest.   37 

 38 

Keywords: G matrix, quantitative genetics, evolution, restricted maximum likelihood, 39 

evolvability, sampling error  40 
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Introduction 41 

The evolutionary properties of sets of phenotypic traits in outbred populations are summarized 42 

by the additive genetic variance-covariance matrix, G (Lande, 1979).  When paired with an 43 

estimate of the strength and direction of selection, G predicts the rate and direction of evolution.  44 

As a result, G matrix estimates are essential elements in a wide variety of evolutionary statistics 45 

that quantify such features as the ability of a population to respond to directional selection on 46 

multiple traits (Lande, 1979, Cheverud, 1996, Hansen & Houle, 2008), the degree of  modular 47 

structure to variation, and how variation of evolution is spread across phenotypic dimensions 48 

(Mezey & Houle, 2005, Hine & Blows, 2006, Kirkpatrick, 2009, Houle & Fierst, 2013).   A 49 

related set of methods focuses on comparison of the evolutionary potential of different 50 

populations (Kirkpatrick, 2009, Cheverud, 1996, Cheverud & Marroig, 2007, Krzanowski, 1979, 51 

Houle & Fierst, 2013, Hansen & Houle, 2008, Aguirre et al., 2014, Hine et al., 2009).  52 

While calculating estimates of such statistics is straightforward, assessing the sampling 53 

properties of these statistics is much more challenging. The first step is always to identify a set of 54 

G matrices consistent with sampling variation of the original data.  Once this is done, the 55 

sampling variation of functions of G can then be estimated by applying the function to these 56 

sample matrices. For many years, data resampling methods, such as bootstrapping or jackknifing 57 

(e.g., Phillips & Arnold, 1999, Mezey & Houle, 2005, Hine et al., 2009) have been the major tool 58 

for generating such families of estimates. Since estimation of G matrices is generally 59 

computationally demanding, data resampling can be prohibitively time-consuming. The rise of 60 

numerical Bayesian estimation using Markov chain Monte Carlo (MCMC) methods (Gelman et 61 

al., 2013, Hadfield, 2010) and their increasing application to quantitative genetics (Sorensen & 62 

Gianola, 2002, O'Hara et al., 2008, Ovaskainen et al., 2008, Aguirre et al., 2014, Stinchcombe et 63 
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al., 2014) has provided a simpler general route to the assessment of the uncertainty in 64 

evolutionary characteristics.  In MCMC methods, the estimation of a G matrix proceeds by 65 

estimating the distribution of G matrices consistent with the data.  The samples from this 66 

posterior distribution are then used to estimate variation in evolutionary statistics (e.g. Aguirre et 67 

al. 2014).  MCMC approaches can also be computationally demanding, and therefore difficult to 68 

apply to data sets with large numbers of parameters and large sample sizes. 69 

Meyer and Houle (2013) recently proposed an alternative method for sampling entire G 70 

matrices based on Restricted Maximum Likelihood (REML).    Provided large sample theory 71 

holds, the sampling distribution of the parameters of G approaches a multivariate normal 72 

distribution with covariance matrix given by the inverse of the information matrix.  Values of G 73 

can be readily sampled from this distribution.  This approach has been implemented in the mixed 74 

model program Wombat (Meyer, 2010-2015). We call this the REML-MVN method. A similar 75 

general approach has been suggested by Mandel (2013). Meyer & Houle (2013) compared 76 

estimates of sampling variances from REML-MVN with those based on simulated data drawn 77 

from the same distribution, and obtained close agreement.  They showed that confidence 78 

intervals from REML-MVN were more accurate than those based on the Delta method (Oehlert, 79 

1992) for parameters near their boundaries, such as genetic correlations approaching unity. 80 

Kingsolver et al. (2015) used REML-MVN to estimate variation in decompositions of G for 81 

function-valued traits.  82 

In this contribution, we demonstrate estimation of evolutionary statistics using REML-83 

MVN for data from a large, high-dimensional data set on wing shape variation in Drosophila 84 

melanogaster (Mezey & Houle, 2005).  Hansen and Houle (2008) previously estimated measures 85 

of evolvability for these data.  The addition of confidence limits to their analysis allows us to 86 
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assess the robustness of their conclusions. We compare these error estimates to those estimated 87 

using the parametric bootstrap and MCMC.  88 

Sampling G matrices based on REML estimates 89 

The Restricted Maximum Likelihood multivariate normal (REML-MVN) sampling approach 90 

relies on the result that the distribution of maximum likelihood estimates asymptotically 91 

approaches a multivariate normal distribution as sample size increases. Let θ denote the vector of 92 

parameters to be estimated, e.g. the ݇ሺ݇ ൅ 1ሻ/2 distinct elements of a covariance matrix ۵.  The 93 

covariance matrix of the estimates is approximated by the inverse of the information matrix, 94 

denoted as H(θ).  If the vector of estimates at convergence is θ̂ , then the distribution of θ̂  is 95 

  ˆ ˆN θ,Η θ .   96 

REML estimates of covariances matrices are constrained to the parameter space, i.e. 97 

forced to have non-negative eigenvalues throughout so that they are positive semi-definite. Most 98 

REML software enforces this by re-parameterizing to estimate the elements of the Cholesky 99 

factors of covariance matrices, the elements of the lower triangular matrix ۺ for ۵ ൌ  In 100  .′ۺ	ۺ

addition, positive diagonal elements of ۺ are ensured by transforming them to logarithmic scale 101 

(Meyer & Smith, 1996).  On completion of the analysis, a `valid’ estimate of ۵ is obtained by 102 

reversing the transformation.  Asymptotic normality of θ̂   holds on either scale.   103 

This then presents the possibility of using the multivariate normal sampling approach on 104 

two different scales; on the G-scale we can use multivariate normality to directly sample the 105 

elements of G (with vector of estimates Gθ ), while on the L-scale we can sample the elements of 106 

L (with vector of estimates Lθ ), and use those to construct estimates of G.   More formally, we 107 
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can generate G matrix values, denoted Ĝ , drawn from the sampling distribution of G, denoted 108 

G , by sampling the elements ofĜ , or by sampling the elements of ۺመ . 109 

Sampling θG directly attempts to approximate the large sample distribution of G, similar 110 

to what MCMC typically does, albeit for different distributions.  There is, however, a key 111 

difference between G-sampling and MCMC in that sampling on the G-scale does not guarantee 112 

that samples Ĝ  are positive semi-definite, i.e. we may obtain values outside of the parameter 113 

space, especially for matrices with eigenvalues close to the boundary.  In contrast, MCMC 114 

algorithms typically sample a sum-of-squares and cross-products matrix guaranteed to be 115 

positive definite.  Sampling on the G-scale will yield a mean of the G  across samples equal to 116 

the REML estimate Ĝ . For linear functions of G, sampling errors and confidence intervals 117 

derived are equivalent to those obtained from  ˆ
GH θ . For non-linear functions, we are likely to 118 

obtain slightly more appropriate estimates than with the Delta method, as we are not performing 119 

a linear approximation. 120 

 In contrast, sampling θL mimics what is done during the REML estimation process and 121 

thus attempts to approximate the actual distribution of estimates of Ĝ . This is affected by 122 

constraints on the parameter space and, while it ensures positive semi-definite samples G , their 123 

mean is thus not necessarily equal to Ĝ , the difference reflecting bias due to constraints. This 124 

bias can be substantial if sample sizes are small and ݇ is reasonably large. Samples of G  or its 125 

functions obtained by sampling θL should thus be more comparable to those from the MCMC 126 

methods discussed above, which also constrain estimates to the parameter space. 127 

On either the L or G scale, samples from the distribution G  are obtained as 128 

 ˆ
Hθ = θ +L d  129 
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where LH is the Cholesky factor of the inverse of the information matrix, and d is a vector of 130 

standard normal deviates   0 1id N , .  The vector θ  is then reshaped into a sample matrix G  131 

for analysis.  This approach has been implemented in the freely available mixed-model package 132 

Wombat (Meyer, 2010-2015).  Using simulated data, Meyer and Houle (2013) demonstrated 133 

excellent agreement between empirical estimates of sampling variation and the L-scale REML-134 

MVN estimates, a point we return to in the Discussion. 135 

 136 

Methods 137 

We estimated the G matrix based on wing measurements of a wild-collected population of D. 138 

melanogaster from Wabasso, Florida USA (Mezey & Houle, 2005).  Mezey and Houle generated 139 

170 half-sib and 790 full-sib families and measured 17,323 wings from parents and offspring.  140 

The phenotypic data were the x,y coordinates of 12 vein intersections measured with 141 

WINGMACHINE, a semi-automated system that records scale information and detects vein 142 

positions from digital wing images (Houle et al., 2003).  The 24 coordinates obtained from each 143 

wing were geometrically aligned to the mean shape using Procrustes least-squares 144 

superimposition (Rohlf & Slice, 1990), which removes centroid size as a scaling factor.  145 

Although the superimposed data are still in the form of 12 pairs of coordinates, 4 degrees of 146 

freedom are used for superimposition, so the resulting G matrix has a maximum rank or 147 

dimensionality of 20.  Mezey & Houle (2005) estimated G piecewise using a method-of-148 

moments mixed model analyses of each pair of traits.  Hansen and Houle (2008) used the 149 

average of Mezey & Houle’s male and female G matrices, shown in Table S1. We will refer to 150 

this as the H&H08 G.  151 
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To estimate sampling error using REML-MVN, we re-estimated G using REML 152 

implemented in Wombat (Meyer, 2010-2015). Before the new analyses, the original Wabasso 153 

data were geometrically aligned with a much larger set of  83,000 wings, including specimens 154 

from 117 dipteran species, our spontaneous mutation data (Houle and Fierst 2013), and 184 155 

Drosophila Genome Reference Project (Mackay et al., 2012) inbred lines. This enables as yet 156 

unpublished comparisons of the Wabasso G matrix to these data sets.  We refer to the original 157 

superimposition used in previous publications (Mezey & Houle, 2005, Hansen & Houle, 2008) 158 

as the ‘Wabasso’ superimposition, and the new one as the ‘combined’ superimposition.  Before 159 

analysis, we scored wing data on the first 20 eigenvectors of the phenotypic variance-covariance 160 

matrix from the pooled male and female Wabasso population data.  We fit sex as a fixed effect to 161 

obtain a direct estimate of the pooled-sex G matrix. Estimation of G was carried out for both 162 

full- and reduced-rank models (Kirkpatrick & Meyer, 2004, Meyer & Kirkpatrick, 2005, 2008), 163 

and we selected the best-fitting model on the basis of  Akaike’s information criterion corrected 164 

for small sample size (AICc).  REML-MVN estimates of sampling variances were then obtained 165 

drawing 100,000 samples of G on both the G- and L-scale. 166 

MCMC analyses were carried out in the R package MCMCglmm (Hadfield, 2010).  To 167 

investigate convergence, we initiated runs using parameters that were functions of the sex-168 

adjusted phenotypic covariance matrix.  All runs used a degree of belief of 20.002, slightly more 169 

than the dimensions of each matrix, and parameter expansion with a half-Cauchy prior with a 170 

scale parameter of 1000 .   These values combine to establish the priors as minimally 171 

informative. With parameter expansion, convergence was rapid, and burn-ins of just 100 172 

iterations were necessary.  Thinning to 60 iterations reduced autocorrelations between samples to 173 

0.1 or less.  Without parameter expansion, runs with different priors needed approximately 5,000 174 
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iterations of burn-in to achieve a stationary distribution, and runs with starting parameters far 175 

from the REML estimates often did not converge.   176 

To provide a meaningful baseline against which to compare the parameter means and 177 

variances we carried out a parametric bootstrap analysis.  This involved resampling data from a 178 

multivariate normal distribution on the pedigree of the Wabasso experiment, using the REML 179 

estimates of G and residual variances as population parameters.  A full REML analysis was then 180 

carried out for each of 1000 simulated data sets, and estimates of sampling variances were 181 

obtained as empirical variances across replicates. Both resampling and analysis were carried out 182 

in Wombat. 183 

 We used the mean wing shapes of seven other drosophilid species (listed in Tables 2 and 184 

3) to choose interesting directions in which to investigate evolvability (Hansen & Houle, 2008).  185 

The mean of each species was based on approximately 200 wings obtained from lab-reared flies.  186 

We recalculated the directions from D. melanogaster based on the same specimens used in 187 

H&H08, but using the combined superimposition, instead of a species-data only superimposition.  188 

This resulted in slightly different estimates of phenotypic distance and direction from those 189 

shown in H&H08. 190 

Evolvability, e, is the predicted response to unit strength selection in the direction of the 191 

selection gradient, β, in the absence of stabilizing selection. It is calculated as the projection of 192 

the response vector to a unit-length β on β 193 

  e β β Gβ
. 194 

Conditional evolvability, c, is the response to unit strength selection when stabilizing selection 195 

around the selected direction is infinitely strong.  Conditional evolvability is  196 

   11( )c
 β β G β β β

, 197 
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and gives the response in direction β to a unit-length β when the response is constrained to be in 198 

direction β.  The actual response to selection in direction β will be between e(β) and c(β), falling 199 

closer to e(β) when stabilizing selection in other directions is weak.  Autonomy, a, is the ratio 200 

c/e, and captures the proportion of variation that allows response in the direction of a selection 201 

gradient.  These measures of evolvability are informative when the units in which traits are 202 

measured are the same (as in our wing shape data), or the traits have been standardized in the 203 

same manner. 204 

 When the direction of selection is not predictable, one can ask about the average 205 

evolvability of a population averaged over all possible directions.  Hansen and Houle (2008) 206 

showed that the expected evolvability, e , is the average eigenvalue of the G matrix.  No exact 207 

solution is available for the expected conditional evolvability, c , or the expected autonomy, a , 208 

but good approximations have been derived in Hansen & Houle (2008, 2009).  The corrected 209 

formulas for these are repeated in Appendix 1.  210 

 211 

 212 

Results  213 

Reanalysis of Mezey& Houle’s (2005) data on wing shape in the Wabasso population of 214 

Drosophila melanogaster shows that the best estimate is a G of rank 20 (full-rank).  The full 215 

model is superior by 38 AIC-penalized log-likelihood units to the simplified rank 19 model in 216 

both the Wabasso and combined superimpositions.  Mezey & Houle’s (2005) conclusion that 217 

there were at least 18 dimensions of genetic variation in these data was conservative.  The 218 

REML estimate of G, back-projected into the original 24 dimensions is shown in Table S2.  219 
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 Table 1 shows the values of a set of evolvability statistics (Hansen & Houle, 2008, see 220 

Methods for definitions) and their sampling errors from parametric bootstrapping, MCMC 221 

estimation and the REML-MVN method.  In addition estimates for the G estimated by Hansen & 222 

Houle (2008) are also shown for comparison.  Overall, the sampling standard deviations are quite 223 

small relative to their means, resulting in sampling coefficients of variation for the evolvability 224 

statistics of 5% or less, with the exception of the minimum eigenvalue, emin, which has a CV 225 

greater than 10% by all methods. The minimum eigenvalue is the most difficult to estimate as it 226 

is the variance closest to a boundary value of 0.  G-scale estimates are not constrained to have a 227 

non-negative emin, so the fact that the G-scale estimates of emin are still many standard deviations 228 

greater than 0 supports the finding of a full-rank G matrix.  The sampling distributions of all 229 

statistics were approximately normal (results not shown).  230 

  The parametric bootstrap estimates are a suitable baseline to compare the other methods 231 

with, as that method enforces multivariate normal data, and makes no large-sample assumption. 232 

The mean REML and MCMC estimates are all within a small fraction of the sampling standard 233 

deviation of the parametric bootstrap value, suggesting that there is little bias in the mean 234 

estimates of the parameters. On the other hand, the H&H08 estimates of e and emax are more than 235 

4 standard deviations higher than the REML estimates.   Conversely, the H&H08 c and emin are 236 

about 2 standard deviations lower than the REML estimates.  The larger eigenvalues in the 237 

H&H08 estimate are biased upwards, while the smaller eigenvalues are biased downwards.  238 

Systematic over-dispersion of sample eigenvalues is a well-known outcome for estimates that are 239 

not constrained to the parameter space (Hill & Thompson, 1978).  240 

Closer examination shows that the estimates of mean and sampling variation may show 241 

subtle biases.  Even though the parametric bootstrap was initiated with the REML estimate, the 242 
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estimates recovered from the bootstrap do not match the ‘best’ REML’ estimate precisely.  In 243 

particular, the three statistics that depend on the inverse of G and therefore on the smallest 244 

eigenvalues (emin, ,c a ), are all more than a standard deviation lower in the bootstrap sample.  245 

This may indicate departures of the data from multivariate normality in the original data.  The 246 

same three statistics have slightly higher means in the L-scale sample than in the G-scale sample, 247 

which is consistent with the L-scale constraint towards positive-definite matrices.  For these data, 248 

sampling on the G-scale, θG, did not yield any samples which were not positive definite, and no 249 

values of emin based on sampling the elements of its Cholesky factor, θL approached the arbitrary 250 

constrained value of 0.0001 in Wombat. This leaves the precise cause of the discrepancy 251 

somewhat unclear.  252 

To get a broader sense for the similarity of the estimates, we calculated the mean and 253 

standard deviation of a range eigenvalues, with the results shown in Figure 1.  On the log scale 254 

all four sets of mean estimates are quite similar, with differences only becoming apparent in the 255 

smallest eigenvalues.  Sampling standard deviations are systematically lower in the REML 256 

estimates compared to the bootstrap;  MCMC standard deviations are even lower.  This may 257 

suggest a small bias in the REML-MVN error estimates, as they are asymptotic, lower bound 258 

values.  While the Wabasso data set comprises a large number of records, a 20-variate, full rank 259 

REML analysis requires estimation of 420 covariance components.  Larger estimates from the 260 

parametric bootstrap may thus indicate that the sample size is not quite sufficient for large 261 

sample theory to hold.  This pattern is sometimes reversed for the smallest eigenvalues and the 262 

statistics that depend on G-1.  This may be due to the fact that the REML constraints on the 263 

parameter space will tend to truncate the smallest eigenvalues (Amemiya, 1985).  An alternative 264 
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explanation for these exceptions is sampling error, as the precision of the error estimates for 265 

these statistics is relatively low.   266 

 Schluter (1996) found that among-species and among-population variation tended to lie 267 

close to the first eigenvector of G, gmax.  Hansen and Houle (2008- H&H08) reasoned that if  G 268 

shapes among-species differences, then the differences among species should be in those aspects 269 

of variation that have the highest evolvabilities, even if those are very different from gmax. To 270 

choose interesting directions of selection to investigate, Hansen and Houle (2008) took 271 

Drosophila melanogaster as the focal species and predicted the ability of D. melanogaster to 272 

evolve towards the phenotype of seven other species that span the traditional genus Drosophila 273 

and one closely related outgroup (Scaptodrosophila latifasciaeformis). The results are shown in 274 

Table 2 for evolvability and Table 3 for conditional evolvability.   275 

 As originally found with the  H&H08 G, evolvabilities and conditional evolvabilities in 276 

the directions of these species are all in the more variable parts of the phenotype space.  As a 277 

result, most of the estimates in H&H08 are substantial overestimates, consistent with the bias in 278 

the higher eigenvalues of G noted above.    279 

Estimates of sampling error for the evolvabilities estimated with each method are again 280 

broadly similar, consistent with the results noted above.  The estimates are fairly precise, with 281 

sampling coefficients of variation slightly less than 5% for the evolvabilities, and 6 to 15% for 282 

the conditional evolvabilities.  These errors are sufficiently small that almost all differences in 283 

evolvabilities between species are statistically significant. 284 

 285 
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Discussion 286 

It has long been known that the additive genetic variance-covariance G is a useful tool for 287 

making predictions about evolution, and for interpreting the pattern of diversification among taxa 288 

(Lande, 1979).  Until recently, efforts to utilize these results have been hampered by the 289 

difficulty of assessing the sampling variation of G and of the complex and often non-linear 290 

statistics that are functions of G.  Bayesian estimation using a Markov-chain Monte Carlo 291 

algorithm (MCMC) has recently been applied to such problems (e.g., O'Hara et al., 2008, 292 

Hadfield, 2010, Aguirre et al., 2014, Stinchcombe et al., 2014), but application of MCMC 293 

methods can be computationally intensive for large problems.   294 

As an alternative, we have applied our recently implemented REML-MVN method 295 

Meyer & Houle, 2013) of estimating the sampling variation in restricted maximum likelihood 296 

(REML) estimates of additive genetic variance-covariance matrices.   As our example, we used 297 

data on wing shape in Drosophila melanogaster from a very large experiment (Mezey & Houle 298 

2005).  We focused on sampling variation in the evolvability statistics proposed in Hansen & 299 

Houle (2008).    300 

Our goal in this contribution has been first to demonstrate the REML-MVN approach for 301 

a single-well-estimated data set.  Comparison of parameter estimates and their sampling error 302 

based shows that REML-MVN estimates are quite similar to those derived from the parametric 303 

bootstrapping and MCMC in mean and variance. We can use the parametric bootstrap as the 304 

baseline for comparison, as those results depend on simulated data that corresponds to the 305 

assumptions of the analysis.  The similarity of all three sets of results validates the accuracy both 306 

the parameter estimates and their sampling errors from the REML-MVN and MCMC 307 
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approaches.   This validation of the REML-MVN approach is also supported by the results for 308 

simulated data reported by Meyer & Houle (2013).        309 

Looking more closely, there are small quantitative departures between bootstrap, REML-310 

MVN and MCMC estimates.  Discrepancies could in principle be explained either by flaws in 311 

the methods, in their application, or by departures of the data from the assumed multivariate 312 

normal distribution. In the case of REML-MVN, these departures potentially reflect 313 

insufficiently sampled aspects of G for which large sample results do not hold.  314 

Given these results, the REML-MVN approach is attractive because it is usually 315 

computationally much more efficient than either MCMC, or bootstrap approaches.  For the data 316 

reanalyzed here, convergence in Wombat (Meyer, 2007, Meyer, 2010-2015) from a poor initial 317 

estimate of G (equal to half the phenotypic variance-covariance matrix) takes 9.5 hours on an 318 

AMD Opteron 4180 processor with speed of 2793 MHz.  Generation of 100,000 REML-MVN 319 

samples then requires only seconds of processor time.  Using the R package MCMCglmm 320 

(Hadfield, 2010) the same problem takes about 6.5 hours to produce 1000 iterations.  Thinning to 321 

every 60 generations, production of the 1,000 samples used in this analysis took over 400 hours 322 

of processor time.  The greater the number of variables, and the closer the initial estimates are to 323 

the final estimate, the greater the run time advantage of REML-MVN over MCMC. 324 

A second advantage of a maximum likelihood approach is that it can be used to test 325 

whether fitting a complex model over a simpler one is supported by the data (Meyer & 326 

Kirkpatrick, 2005, Meyer & Kirkpatrick, 2008).  Such tests are important to perform when there 327 

is some doubt about whether a complex model can be supported by the data, given that both 328 

standard MCMC and the L-scale REML-MVN approach produce estimates constrained to be of 329 

full rank.   330 
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While our results, plus the simulations reported in Meyer & Houle (2013), validate the 331 

use of REML-MVN in some cases, this does not mean that REML-MVN will perform well for 332 

all data sets.  Therefore, we suggest that REML-MVN estimates of sampling error should 333 

continue to be validated with estimates from a second approach.  Parametric bootstrapping based 334 

on the REML estimates obtained is probably the least computationally intensive of the 335 

alternatives, given that if the model is strongly supported by the data, convergence with a new 336 

simulated data set should be relatively rapid.   Restricted maximum likelihood does well for 337 

multivariate normal data, but is unsuitable when the data follows other distributions, whereas 338 

Bayesian methods readily accommodate such cases.  REML-MVN depends on large-sample 339 

approximations that are inappropriate for data sets where the amount of information in the data is 340 

small relative to the number of parameters estimated.  For such cases MCMC is likely to perform 341 

better. Alternative approaches, based for example on the profile likelihood for individual 342 

parameters, might also be more appropriate than REML-MVN when large sample properties do 343 

not hold.   344 

  The REML reanalysis of these data confirmed Mezey & Houle’s (2005) conclusion that 345 

the G matrix for this data set is full-rank.  Models with lower dimensionality fit at least 38 346 

Akaike information criterion units less well than the full 20-dimensional model.  Hine & Blows 347 

(2006) suggested that the bootstrapping method employed by Mezey & Houle (2005) was biased 348 

towards high dimensionality, but Hine & Blows simulated only one of the two bootstrapping 349 

approaches of Mezey & Houle.  On the other hand, these new analyses do show that the original 350 

estimates obtained by Mezey & Houle (2005), using a method of moments analysis, were biased.  351 

Results that depend on the best-estimated parts of the G with large additive genetic variances, 352 

such as the maximum evolvability and the average evolvability were overestimated by Mezey & 353 
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Houle (2005) by up to 17%. On the other hand, the less well-estimated aspects of the matrix that 354 

have the least genetic variance were underestimated by up to 8%.  This pattern of bias is 355 

expected for unconstrained estimates of covariance matrices (Hill & Thompson, 1978).   356 

In conclusion, resampling G matrices using the restricted maximum likelihood, 357 

multivariate normal approach can generate accurate assessments of sampling variation in 358 

evolutionary statistics.  The relatively short run time of this method makes it an attractive 359 

alternative to both data resampling and Bayesian estimation using a Markov chain Monte Carlo 360 

approach.  361 
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Table 1.Overall evolvability statistics.  Evolvabilities and conditional evolvabilities have units of  106 centroid size.  Bootstrap, REML 1 

resamples and MCMC posterior distributions are each calculated from 1,000 samples.   2 

 Mean Standard deviation 

 e   emax emin c a e emax emin c a

H&H08 14.61 83.04 0.09 1.00 0.069      

REML 13.071 70.870 0.129 1.076 0.0947       

Parametric bootstrap 13.081 71.652 0.109 1.000 0.0883  0.247 3.247 0.016 0.049 0.0045

REML-MVN, G-scale 13.083 71.527 0.109 1.001 0.0883  0.222 2.834 0.018 0.055 0.0049

REML-MVN, L-scale 13.121 71.418 0.122 1.067 0.0937  0.227 2.822 0.017 0.049 0.0044

MCMC 13.259 72.168 0.110 1.022 0.0888  0.211 2.558 0.015 0.050 0.0044

  3 
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Table 2. Evolvabilities in the direction of species divergence, e(β), in units of centroid size × 106.  Phenotypic distances from D. 1 

melanogaster wings to other Drosophilid flies are in centroid size units.  2 

 distance 

to D. 

melano- 

gaster 

 

Best estimate 

 

Mean 

 

Standard deviation 

Species H&H08 REML MCMC  bootstrap

REML 

L-scale 

REML 

G-scale MCMC  bootstrap

REML 

L-scale 

REML 

G-scale MCMC

D. simulans 0.011 34.4 22.52 22.22 22.50 22.55 22.59 23.08 1.11 1.00 0.98 0.92

D. 

ananassae 0.082 66.7 41.44 41.85 41.43 41.50 41.54 42.11 1.92 1.70 1.67 1.45

D. pseudo-

obscura 0.041 64.9 38.44 38.50 38.47 38.46 38.40 38.99 1.79 1.64 1.57 1.59

D. 

willistoni 0.056 55.1 47.5 48.40 47.60 47.50 47.75 48.35 2.26 2.03 2.07 1.81

D. virilis 0.057 46.6 30.96 31.31 31.00 30.84 31.00 31.26 1.40 1.28 1.20 1.20

D. 

grimshawi 0.172 55.2 41.78 41.95 41.82 41.66 41.89 42.20 1.94 1.70 1.64 1.55

S. latifasi-

aeformis 0.114 56.9 48.63 49.03 48.68 48.65 48.84 49.21 2.29 1.95 1.96 1.65
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Table 3. Conditional evolvabilities in the direction of species divergence, c(β), in units of centroid size × 106.  Samples described in 1 

Table 2.  2 

 Best estimate  Mean  Standard deviation 

Species H&H08 REML MCMC  bootstrap

REML L-

scale 

REML G-

scale MCMC  bootstrap

REML L-

scale 

REML G-

scale MCMC

D. simulans 2.7 1.69 1.50  1.57 1.66 1.58 1.50  0.17 0.17 0.18 0.16

D. ananassae 13.7 13.75 13.11  13.09 13.51 13.11 13.11  1.04 0.96 0.99 0.84

D. pseudo-

obscura 12.7 6.69 6.51  6.28 6.58 6.30 6.51  0.56 0.54 0.59 0.57

D. willistoni 10.7 10.88 10.68  10.48 10.68 10.46 10.68  0.68 0.65 0.64 0.60

D. virilis 10.5 4.68 4.58  4.48 4.60 4.50 4.58  0.30 0.28 0.30 0.28

D. grimshawi 17.4 7.5 7.65  7.20 7.36 7.21 7.65  0.46 0.43 0.46 0.45

S. latifasiae-

formis 24.9 9.53 8.24  8.75 9.37 8.75 8.24  1.15 1.19 1.24 1.08

  3 
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Figure 1. Mean (A) and standard deviation (B) of log10 eigenvalue estimates from the parametric 4 

bootstrap, REML-MVN on the L- and G-scales, and MCMC.  5 

  6 
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 7 

Appendix 1 8 

 9 

The original approximations for the expected conditional evolvability, c , and autonomy, a , 10 

over all directions in phenotype space in Hansen & Houle (2008) were incorrect, and were 11 

corrected in Hansen & Houle (2009).  For clarity, we repeat the corrected equations here.  12 

The approximations depend on the following quantities: k is the dimension of matrix, 13 

 E[ ] and E 1   are the means of the eigenvalues and of the inverse eigenvalue, respectively,14 

   H 1 E 1 /   is the harmonic mean eigenvalue;       2
I EVar    is the variance of 15 

the eigenvalues, standardized by the square of the mean eigenvalue;        2
I 1 1 / E 1Var    16 

is the variance of the inverse of the eigenvalues standardized by the square of the mean inverse 17 

eigenvalue.  18 

The expected value of c  is approximately 19 

    2I 1
H 1

2
c

k



 

  
 

 . 20 

The expected value of a  is approximately 21 
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