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Abstract

Background: The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a
surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have
been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the
inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and
the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play
roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear
envelope, telomere-led nuclear reorganization during meiosis, and karyogamy.

Results: We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize
genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5), which fell into two
classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses). The first
(ZmSUN1, 2), here designated canonical C-terminal SUN-domain (CCSD), includes structural homologs of the animal
and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5), here designated plant-prevalent mid-SUN 3
transmembrane (PM3), includes a novel but conserved structural variant SUN-domain protein gene class.
Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but
low-level expression (50-200 parts per ten million) in multiple tissues for all the others. Cloning and characterization
of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were
used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at
the nuclear periphery.

Conclusions: The maize genome encodes and expresses at least five different SUN-domain proteins, of which the
PM3 subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant
nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5
expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and
PM3-type SUN-domain proteins are presented.

Background
Organization of Chromatin and the Nuclear Envelope in
Animals and Plants
Genomic DNA is packaged by proteins into chromatin
that resides within the nuclear space in eukaryotic

organisms. Within this three-dimensional space, inter-
phase chromosomes are often observed to occupy dis-
crete, nonoverlapping territories [1,2]. The architecture
of the cell nucleus as a whole, in combination with
chromatin dynamics, provides a basis for cells’ regula-
tion of their gene expression, DNA replication, and
DNA repair [2-4]. The eukaryotic cell nucleus is sur-
rounded by a double membrane, the nuclear envelope
(NE), which is composed of the inner and outer nuclear
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membranes, separated by an ~30-nm perinuclear space.
The two are connected through nuclear pore complexes,
and the space between them is continuous with the
lumen of the endoplasmic reticulum (ER). Intrinsic
membrane proteins associated with the inner and outer
membranes make the NE a rather dynamic membrane
system with a multitude of essential functions, including
nuclear migration and positioning, cell cycle-dependent
NE breakdown and reformation, cytoplasmic-nuclear
shuttling, calcium signaling, gene expression, genome
stability, meiotic chromosome behavior, and karyogamy
[3-11]. Mutations in NE-associated proteins, such as
nuclear lamins, give rise to a variety of heritable diseases
in animals, collectively termed laminopathies, including
muscular dystrophy, lipodystrophy, diabetes, dysplasia,
leukodystrophy, and progeria [12-16].
Recent advances in yeast and animal NE research have

identified SUN (Sad1p/Unc-84) domain homology pro-
teins as key residents of the NE, and their presence in
plants is just beginning to be recognized and character-
ized [17-19]. Despite the conservation of NE-mediated
functions between plants and animals and the impor-
tance of the NE in plant biology, knowledge of the plant
NE proteome remains limited [20-23].

SUN-Domain Proteins Are Highly Conserved
SUN-domain proteins have gained attention as a family
of widely conserved NE-associated proteins that can
transmit forces between the nucleus and cytoplasmic
motility systems. SUN-domain proteins were first char-
acterized in Schizosaccharomyces pombe and Caenorhab-
ditis elegans as NE-associated proteins associated with
spindle pole-body and nuclear-migration defects, respec-
tively [24,25]. Since then, their analysis in other eukar-
yotes has extended their functions to roles in
chromosome tethering, telomere maintenance, meiotic
chromosome behavior, nuclear pore distribution, mitotic
chromosome decondensation, and the regulation of
apoptosis [13,26-35]. Furthermore, genetic analysis
revealed that knockouts within the mouse SUN1 gene
disrupted the expression of piRNAs and caused a misre-
gulation of a large number of meiosis-specific reproduc-
tive genes [36].
In animals and fungi, SUN proteins interact through

their C-terminal SUN domains in the perinuclear
space with outer-nuclear-membrane-associated KASH
(Klarsicht/ANC-1/Syne-1 homology) proteins as part
of the LINC (Linker of Nucleoskeleton and Cytoskele-
ton) complex [13,37-43]. The other members of the
KASH-domain family are proteins with cytoplasmic
domains and nuclear lamins that reside in the nucleo-
plasm and therefore allow forces produced within the
cytoplasm to be transmitted to the nuclear periphery.
Evidence for the expression and NE localization of

plant SUN-domain proteins has emerged from studies
looking at cytokinesis in Arabidopsis and nuclear pro-
teomics in rice [17-19]. Additional studies with
AtSUN1 and AtSUN2 firmly establish that these pro-
teins reside in the NE like their animal and fungal
counterparts [17-19].

SUN-Domain Proteins and Meiotic Chromosome Behavior
Some animal and fungal SUN-domain proteins are
known to have a conserved role in meiotic chromosome
behavior [9,13,33,34,44]. During meiotic prophase I, a
dramatic reorganization of the nucleus occurs in which
the chromosomes compact and telomeres attach them-
selves to the NE by an unknown active mechanism,
cluster into a bouquet arrangement, and finally disperse
along the surface of the inner nuclear membrane. The
formation and dynamics of the bouquet configuration of
meiotic chromosomes contribute to proper homologous
chromosome pairing, synapsis, recombination, and seg-
regation [45-50].
In maize, meiotic telomere clustering has been

demonstrated to occur de novo on the NE during meio-
tic prophase I, and the temporal patterns are nearly
identical to those in mammals [45,51]. Interestingly,
genetic disruption of the SUN1 gene in mouse leads to
defects in meiotic telomere-NE association, pairing,
synapsis, and recombination, a phenotype remarkably
similar to those of two maize synapsis-deficient mutants,
desynaptic (dy) and desynaptic1 (dsy1) [33,52].
We set out to identify maize SUN genes to provide a

foundation for analysis of meiosis and other nuclear
processes in plants. Using bioinformatics and molecular
approaches, we discovered five different SUN-domain
genes (here designated ZmSUN1-5) in the maize gen-
ome. We present evidence that these fall into two subfa-
milies, which we call canonical C-terminal SUN domain
(CCSD) and plant-prevalent mid-SUN 3 transmembrane
(PM3). We also provide the first evidence for expression
and localization of PM3-type proteins and discuss the
possible significance of this novel structural-variant
subfamily.

Results and Discussion
Identification of Maize Genes Encoding Canonical
C-terminal SUN-Domain (CCSD) Proteins
A reference genome sequence was recently produced for
the inbred line B73 (B73 RefGen_v1 [53]). The SUN
genes described here refer to B73 sequences where pos-
sible, although many of the public cDNA and EST
sequences in GenBank are from multiple other inbred
lines of maize. We identified SUN-domain protein genes
in a model plant genetic system by using a BLAST
homology search of the maize genome queried with a
fungal SUN-domain protein Sad1p, from S. pombe [24].
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The two different putative maize SUN-domain protein
genes we initially identified, ZmSUN1 and ZmSUN2,
were each predicted to encode ~ 50-kDa proteins.
When the predicted protein sequences were used to
query the Conserved Domain Database (version 2.21,
NCBI), each revealed the presence of a single conserved
domain, the SUN/Sad1_UNC superfamily (pfam07738),
near the C-terminus of the proteins. These maize genes
are homologous to recently characterized plant SUN-
domain protein genes from Arabidopsis (AtSUN1,
AtSUN2 [54,55]) and rice (OsSad1 [18]). Experimental
evidence from heterologous expression assays with
fluorescent protein fusions indicates that these Arabi-
dopsis and rice CCSD proteins are localized at the NE.
The presence of a C-terminal SUN domain and the NE
localization are among the defining features of animal
and fungal SUN proteins [9,13,38]. Plant genomes there-
fore appear to encode canonical C-terminal SUN-
domain (CCSD) type proteins, an observation that is not
surprising given the conserved role of these proteins in
basic eukaryotic processes such as meiosis, mitosis, and
nuclear positioning [8,9,38,39,42].

Discovery of Maize Genes Encoding PM3-type of SUN-
domain Proteins
Additional bioinformatic analyses revealed that the
maize genome encodes not only CCSD-type SUN-
domain proteins but also a unique family of SUN-
domain protein genes not previously described.
Members of this second group of genes (ZmSUN3,
ZmSUN4, and ZmSUN5) encode slightly larger proteins
with three transmembrane domains, a single SUN-
domain that is not at the C-terminus but rather in the
middle of the protein, and a highly-conserved domain of
unknown function that we refer to as the PM3-
associated domain (PAD). When used to query the Con-
served Domain Database, these predicted proteins also
revealed the presence of the SUN/Sad1_UNC superfam-
ily, pfam07738. Homologous protein sequences with
similar secondary structure and motif arrangement were
found to be prevalent within plant genomes. We refer
to this group, therefore, as the PM3-type (Plant-preva-
lent Mid-SUN 3 transmembrane) SUN-domain proteins,
as represented by the founding members ZmSUN3,
ZmSUN4, and ZmSUN5. A summary of the five maize
SUN-domain protein genes is provided in Table 1 and
the properties and motifs of the CCSD and PM3 subfa-
milies of these proteins are summarized in Table 2.

Conservation of Two Classes of SUN-domain Proteins
in Plants
We next carried out a phylogenetic analysis of CCSD and
PM3-type SUN-domain protein sequences from maize,
sorghum, rice, Arabidopsis, and moss (Physcomitrella

patens). Protein sequence alignments were used to pro-
duce an unrooted phylogenetic tree, shown in Figure 1.
From the unrooted phylogenetic tree, we observed two
different types of groupings. The first, a clear separation
of the CCSD (green shaded area, Figure 1) and PM3 (yel-
low shaded area, Figure 1) subfamilies, suggests an
ancient divergence of these two classes. These data also
suggest that the PM3 proteins originated early in the life
of the plant kingdom, predating the origin of flowering
plants. The second, four orthologous groups observed
within the grass species (SUN Orthologous Grass
Groups, labeled SOGG1-SOGG4 in Figure 1), may reflect
functional divergence within each subfamily. If so, these
SOGGs would be predicted to share expression patterns
or genetic functions. Interestingly, the two plants outside
the grass family, Arabidopsis and the nonflowering tra-
cheophyte P. patens, also have genes predicted to encode
at least two CCSD and at least two PM3 proteins, but
their relationship to the SOGGs is not resolved by this
phylogenetic analysis. Plant genomes therefore appear to
encode two different multigene subfamilies of SUN-
domain proteins, the CCSD and PM3 types.

Shared Gene Structures Reflect an Early Divergence of
the Two Types of Maize SUN-domain Proteins
The 2.3-Gb maize genome is partitioned among 10
structurally diverse chromosomes, which are predicted
to encode over 32,000 genes [53]. The genetic map of
maize is subdivided into approximately 100 10-to 15-cM
bins [56]. The genome is complex and dynamic because

Table 1 Maize genes encoding SUN-domain proteins

Gene mRNA

Class Maize
genea

Locusb BACc cDNAd UniGenee

CCSD ZmSUN1 5 S,
bin
5.04

AC217313 EU964563 Zm.94705

ZmSUN2 3 S,
bin
3.04

AC197221 BT055722 Zm.6043

PM3 ZmSUN3 3L, bin
3.06

AC195254 GRMZM2G122914_T01

ZmSUN4 8L, bin
8.06

AC188196 GU453173 Zm.17612

ZmSUN5 8L, bin
8.05

AC194341 EU953247 Zm.31400

aGene names assigned in this manuscript. Numerical designations (ZmSUN1-5)
do not necessarily imply orthology with similarly named genes in other
species.
bChromosome number and arm (S, short; L, long), genetic bin as designated
for the UMC 1998 linkage map [56].
cGenBank accession numbers for B37 BACs that include the indicated SUN
gene.
dBest corresponding full-length cDNA or gene model from B73 RefGen_v1;
ZmSUN4 is from maize line W23, all others from B73.
eGenBank maize UniGene accession numbers.
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of extensive and recent large segmental duplications
[53,57-59] and a major expansion of long terminal
repeat sequences over the last few million years. Current
breeding lines and natural accessions of maize harbor
large amounts of sequence diversity and many structural
polymorphisms [53,58,60].
Using full-length cDNAs (listed in Table 1) together

with the B73 reference genome, we were able to define
the structures of five maize SUN-domain genes as shown
in Table 1 and Figure 2. Three of these genes (ZmSUN1,
2, and 3) are distributed as unlinked loci that map to two
different chromosomes; ZmSUN4 and ZmSUN5 reside in
adjacent genetic bins. In determining whether the CCSD
or PM3 genes were located in any of the known blocks of
genome duplication, we found that the high degree of
sequence similarity between the SOGG3 genes ZmSUN3
and ZmSUN4 suggests they arose as part of a gene-
duplication event that is known to have resulted in many
closely related gene pairs in maize [56,58]. Indeed these
two genes reside within a large syntenic duplicated block
on chromosomes 3 (bin 3.06) and 8 (bin 8.06). This
observation is consistent with the phylogenetic results
that revealed the presence of four orthologous SUN-
domain protein groups, SOGG1 (ZmSUN1), SOGG2
(ZmSUN2), SOGG3 (ZmSUN3, ZmSUN4), and SOGG4
(ZmSUN5). Surprisingly, we have not observed duplicate
genes for ZmSUN1, ZmSUN2, or ZmSUN5, so these may
exist as single copies in the B73 maize genome.

An analysis of intron and exon structures within the
maize SUN genes showed that the gene structures are
conserved within each class. The CCSD genes had two
or three exons, and the SUN domain was split between
the exons. On the other hand, the PM3 genes had 4-5
exons and a SUN domain that was encoded within the
largest exon. Comparative analysis of the maize ZmSUN
gene structures revealed that the CCSD genes shared an
ancestral intron that interrupts the SUN domain
(between K364 and V365 in the ORF of ZmSUN1 and
between K338 and D339 in the ORF of ZmSUN2; Figure
2A). This ancestral intron position may be a hallmark of
this class of SUN genes, as it is also found in the Arabi-
dopsis, rice, sorghum, and moss homologs. ZmSUN1
and ZmSUN2 share a large intron, greater than 3 kb in
size, whereas the PM3 genes all possess small introns
ranging from 19 to 483 nucleotides in size.

Properties of Maize SUN-domain Proteins
Using the full-length cDNAs listed in Table 1 we pre-
dicted the encoded proteins for five different maize
SUN-domain proteins. Their features and primary
motifs are summarized in Table 2 and diagrammed in
Figure 3. A multiple sequence alignment of CCSD-type
proteins reveals divergence at the N-terminal region and
conservation at the C-terminal region which encom-
passes the SUN domain (Additional file 1 Figure S1).
Several previously characterized fungal and animal

Table 2 Properties and motifs of maize SUN-domain protiens

Predicted propertiesa Motifse

Class Name Lengthb kDa pIc Cysd TMf SUNg CCh PADi

CCSD ZmSUN1 462 51 9.1 3 W116-W141 N315-K454, (6 e-39) F165-D228

ZmSUN2 439 48 7.8 3 T84-W109 P294-G425 (3 e-32 D166-L192

PM3 ZmSUN3 613 68 4.9 7 TM1, L33-V55
TM2, L555-M577
TM3, L599-I612

F233-D357 (2 e-38) A482-F515 G437-G474

ZmSUN4 639 71 5.2 9 TM1, G58-L75
TM2, L581-M603
TM3, G621-I638

F257-D381 (7 e-38) D514-E539 G463-G500

ZmSUN5 589 64 5.3 9 TM1, V46-L66
TM2, L525-C544
TM3, M572-Y588

H197-D321 (9 e-35) CC1, V414-E434 CC2, K495-K523 G407-G444

aProtein ORFs used were predicted from the sequences listed under cDNA from Table 1. Properties were calculated by means of the online ProtParam software,
http://us.expasy.org/tools/protparam.html [80].
bTotal number of amino acids in the predicted ORF.
cpI, predicted isoelectric point.
dTotal number of cysteine residues.
eMotifs and domains are indicated by the first and last amino acid; the amino acid numbers for the ORFs are those from the sequences listed under cDNA from
Table 1.
fTM, locations of transmembrane regions predicted by the online software www.ch.embnet.org/software/TMPRED_form.html[70]. The multiple TMs of the PM3
proteins are named TM1, TM2, and TM3 according to the order of their occurrence starting from the N-terminus.
gSUN, Sad1_UNC superfamily (pfam07738) domain locations and significance values are from alignments to the Conserved Domain Database (CDD version 2.21,
NCBI), http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml[81].
hCC, coiled-coil motifs are predicted from the online COILS software http://www.ch.embnet.org/software/COILS_form.html[69]. The two CCs in SUN5 are called
CC1 and CC2 according to the order of their occurrence starting from the N-terminus.
iPAD, PM3-associated domain of unknown function defined here by multiple sequence alignments.
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SUN-domain protein structures (Figure 3A) are also
shown for comparison. The SUN-domain proteins of
human, mouse, worm, and fission yeast differ in size
and number of transmembrane and coiled-coil motifs,
but all a have single C-terminal SUN domain, consid-
ered a diagnostic feature for this family of NE-associated

proteins. The plant proteins that most closely resemble
the founding members of the SUN-domain protein
family are those encoded by the CCSD genes. The plant
CCSD proteins exhibit conserved size and overall struc-
ture to a remarkable degree, having one transmembrane
domain followed by one coiled-coil domain, and share

0.1 

CCSD-Type PM3-Type 

AtSUN1 
(At5g04990) 

AtSUN2 
(At3g10730) 

OsSAD1 

ZmSUN1 

Sb04g005160 

ZmSUN2 

Os01g0267600 

PpXP_001758231 

Os01g65520 
ZmSUN4 

ZmSUN3 

Sb03g041510 

At1g71360 

PpXP_001776531 

At1g22882 

Os01g41600 

      ZmSUN5 

Sb03g026980 
PpXP_001775438  

PpXP_001758570 

SOGG4 

SOGG3 

SOGG1 

SOGG2 

Figure 1 Phylogenetic relationships among selected SUN-Domain proteins in the plant kingdom. An unrooted phylogenetic tree of SUN-
domain proteins is shown, deduced from full-length cDNAs from maize (Zea mays, Zm), Arabidopsis (At), rice (Os), Sorghum bicolor (Sb), and
moss (Physcomitrella patens, Pp). GenBank accession numbers are given in the figure, except for those of maize, which are from sequences listed
in Table 1. The protein maximum-likelihood tree was created with TreeView, version 1.6.6 [71]. Proteins belonging to the canonical (CCSD, green
shaded area) and mid-SUN (PM3, yellow shaded area) classes are indicated. Four SUN orthologous grass groups (SOGG1-4) are also indicated. A
partial EST from sorghum (Sb03g010590/PUT-157a-Sorghum_bicolor-11155) aligns with the SOGG2 group but was excluded from the analysis
because it lacked a full-length ORF. Scale bar (0.1) represents 10 expected amino-acid changes for every 100 residues.
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CCSD-Type A 
ZmSUN1 

EU964563 
ATG 212 1403 1933 1404 
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1700 271 272 
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ZmSUN2 
BT055722 
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Figure 2 Genomic structures for the two subfamilies of maize SUN-domain protein genes. The locations of exons, start (ATG), and stop
(TGA, TAA) codons are shown for each gene. The diagrams were drawn from predictions made by the SPIDEY program http://www.ncbi.nlm.nih.
gov/spidey/ on the basis of alignments of cDNA to genomic DNA sequences (from Table 1). The mRNA coordinates for the exon bases are listed
above the diagrams. Exons are numbered, and the intron lengths (bp) appear below the diagrams. (A) The canonical C-terminal SUN domain
genes show a large intron at a conserved location interrupting the SUN domain region (yellow box) within the ORF. (B) The plant-prevalent mid-
SUN 3 transmembrane genes all share a large exon that contains the entire SUN domain plus a domain of unknown function (black box)
associated with these genes, as well as two small introns before the last exon.
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PM3-Type 

CCSD-Type 

A 

B 

C 

Non-Plant SUN 
Proteins 

SOGG1 

SOGG2 

SOGG3 

SOGG4 

Figure 3 Conservation of functional domains in plant and animal SUN-domain proteins. Comparative diagrams of SUN-domain proteins
depicting protein sizes and domain locations (see Table 2). The positions of transmembrane (red), coiled-coil (blue), SUN (yellow), and PM3-
associated (PAD) domains (black) are indicated for each protein. (A) Known nonplant SUN-domain proteins (human, Hs; mouse, Mm; nematode;
Ce; fission yeast, Sp) of various sizes, but all with a single C-terminal SUN domain are shown (UniProt accession numbers: HsSUN1, O94901;
HsSUN2, Q9UH99; MmSUN1, Q9D666; MmSUN2, Q8BJS4; CeSUN1, Q20924; CeUNC84, Q20745; SpSAD1, Q09825). (B) CCSD and (C) PM3 plant
proteins grouped by their orthologous groups (see Figure 1).
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an overall size of about 50 kDa (Figure 3B). Relatively
little is known about the CCSD proteins in plants.
Fluorescent protein fusion assays with AtSUN1,
AtSUN2, and OsSad1 demonstrate localization to the
NE [18,55]. In addition, The CCSD proteins probably
share some functions with their animal counterparts but
have not been proven to do so.
Even less is known about the PM3 proteins, and their

functions are completely uncharacterized. They are sig-
nificantly larger than plant CCSD proteins (Figure 3C).
Their shared structural features are an N-terminal trans-
membrane domain, an internal SUN domain, a PAD,
one or more predicted coiled-coil motifs, and two clo-
sely spaced C-terminal transmembrane domains (Table
2 Figure 3C). This collection of features defines them
structurally, but the central location of the SUN domain
is not unique to plants. Other, nonplant mid-SUN-
domain proteins, largely uncharacterized, from various
species including fungi, flies, worms, and mammals can
be identified by sequence-search analyses (data not
shown). Whether or not these proteins reside or func-
tion in the NE remains to be determined.
In addition to their difference in size and SUN domain

locations, these protein subfamilies are distinct in other
interesting ways (Table 2). The CCSD-type proteins
have a basic isoelectric point, whereas the PM3-type
proteins have an acidic one (Table 2). In addition, the
PM3 proteins have a relatively large number of cysteine
residues that may play important roles in intra- or inter-
molecular disulfide bridge formation. Furthermore, a
multiple sequence alignment reveals that the PM3 pro-
teins all have the highly conserved region that we call
the PAD (Figure 4 Additional file 2 figure S2). This
region of approximately 38 residues appears diagnostic
for plant PM3 proteins and is spaced about 80-90 resi-
dues after the SUN domain. The SUN domain and the
PAD for 11 plant proteins revealed a high degree of
amino acid conservation.
Despite the similarity of domain architecture and

sequence similarity within conserved domains, the remain-
der of the protein regions exhibit considerable sequence
divergence between the SOGG3 and SOGG4 members in
any given species. Overall, these analyses show that the
maize genome encodes at least two multigene families of
SUN-domain proteins. Each of these two subfamilies com-
prises at least two genes. ZmSUN1 and ZmSUN2 are
CCSD-type and are most closely related to plant SUN-
domain homologs AtSUN1, AtSUN2, and OsSad1.
ZmSUN3, 4, and 5 are PM3-type and probably represent a
previously unknown class of SUN-related proteins in plants.

mRNA Expression Profiling of ZmSUN Protein Genes
The conservation of the SUN-domain protein genes in
plants suggests that they potentially have functions

similar to those of their animal counterparts, for exam-
ple nuclear positioning and motility within the cell, brid-
ging the cytoplasm to the cortical layer of the
nucleoplasm, and contributing to meiotic chromosome
segregation through telomere tethering before synapsis
and recombination [8,9,44]. Maize SUN domain genes
that function in basic somatic cell processes such as
mitosis, nuclear architecture, and chromosome tethering
might be expected to show ubiquitous expression,
whereas those that function in meiosis or pollen-nuclear
migration or nuclear fusion at fertilization might show a
more limited expression profile, being active in repro-
ductive organs such as flowers, egg and pollen mother
cells, and gametophytic tissues such as pollen grains. To
begin to examine these possibilities, we looked at gene
expression at the mRNA abundance level using three
different sources of information: NCBI’s UniGene;
microarray expression data from anthers, which contain
male meiotic cells; and Solexa transcriptome profiling
data derived from maize inbred line B73 tissues.
Four of the five genes (all but ZmSUN3) are repre-

sented by consensus UniGene models in NCBI (Table
1), and three of these, ZmSUN1, ZmSUN2, and
ZmSUN4, are accompanied by quantitative EST profile
information expressed as transcripts per million, which
we converted to transcripts per ten million (TPdM).
The EST data were pooled according to tissue type, and
only relatively deeply sequenced libraries (10,000-15,000
or more) showed evidence of expression, as summarized
in Additional file 3 Figure S3. The CCSD genes,
ZmSUN1 and ZmSUN2, appeared to be expressed at
relatively low levels (200-2,000 TPdM) in several tissues,
including ear, endosperm, embryo, meristem, pollen,
and tassel. Only one PM3-type SUN-domain gene,
ZmSUN4, currently has corresponding EST profile data
available from NCBI. It too shows relatively low expres-
sion levels (~400-3,000 TPdM) in a variety of tissues,
such as embryo, pericarp, and shoot. These values are
roughly 10% of those for UniGene EST data from two
control so-called house-keeping genes, alpha tubulin 4
(tua4, Zm.87258) and cytoplasmic GAPDH (Zm.3765),
which are expressed in 17 of the 19 tissues at levels
from ~2,200 to 21,000 TPdM.
Given the role of SUN-domain proteins in meitoic tel-

omere behavior in a variety of nonplant eukaryotic spe-
cies, we next examined microarray data from mRNA
expression profiles of male reproductive organs from 1-
to 2-mm anthers. Anthers in this size range are from
tassels that had not yet emerged and and contain meio-
cytes before or during meiotic prophase. Microarray
probes (60-mer oligonucleotides, as described in [61])
that showed 100% match with our B73 gene models
were available for each gene, and their relative expres-
sion values are plotted in Figure 5. From these analyses,
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Figure 4 Multiple sequence alignment of PM3 SUN domains and PAD regions. Multiple sequence alignments from ClustalW2 for isolated
domains of PM3 proteins from five plant species. Box shade alignment displays show conserved residues (identical black, similar grey) and an
alignment consensus sequence at the bottom. (A) Alignment of the SUN domains with amino-acid numbers indicated. (B) Alignment of PAD
regions composed of a ~38-amino acid segment.
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we observed that the relative expression levels of
ZmSUN5 and ZmSUN2 were highest in meiosis-stage
anthers, whereas ZmSUN1 and ZmSUN3 were the low-
est there, and ZmSUN4 was intermediate in the overall
range (~80 to 3,000 TPdM).
Ascribing the meiotic telomere clustering functions to

any one of the five SUN genes may prove difficult, at
least partly because the anther is made up of several dif-
ferent cell types that include not only cells in meiosis
but also a layer of epidermal, intermediate, and tapetal
cells. The expression or function of plant SUN genes
could be partitioned among these cell types, whereas
these methods produced only a single value over the
entire anther [61]. Another consideration is that even
single cells may contain multiple SUN proteins with dif-
ferent, related, or even cooperative functions, such as

NE rearrangements, interaction with nuclear pores, or
paternal storage of gene products for postmeiotic func-
tions such as pollen mitosis, pollen tube growth, nuclear
migration, and fertilization.

Solexa Transcriptome Expression Profiling
Expression levels for the two Solexa-based sequencing-
by-synthesis methods we used, Solexa dual-tag-based
(STB) and Solexa whole transcriptome (SWT) http://
www.illumina.com/technology/sequencing_technology.
ilmn), are also reported in transcripts per 10 million and
derived from experiments on pooled samples of six
major tissues of the B73 cultivar. Both the Solexa tech-
nology and the EST UniGene data provide discrete
counts of sequenced molecules, but the Solexa data are
based on millions, not thousands, of reads per
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Figure 5 Expression of ZmSUN genes in meiosis-stage anthers. Relative expression levels shown by maize SUN-domain protein genes
obtained from published microarray experiments (Gene Expression Omnibus [73,79]). The cDNAs were from meiosis-stage anthers 1 mm, 1.5
mm, and 2 mm in length. The histogram depicts signals relative to the whole-chip mean. Dye-normalized values for each channel generated by
Feature Extraction software were divided by the median intensity for that channel on each array, and then the log base 2 was taken, as
previously described [61]. The table at the bottom tabulates the gene name (Gene), Probe ID (the gene model/contig being targeted), and
feature number (chip oligo 60-mer).

Murphy et al. BMC Plant Biology 2010, 10:269
http://www.biomedcentral.com/1471-2229/10/269

Page 11 of 22

www.ch.embnet.org/software/TMPRED_form.html
www.ch.embnet.org/software/TMPRED_form.html
www.ch.embnet.org/software/TMPRED_form.html


Leaf 

Root 

Immature ear 

Tassel 

Pollen 

SWT 
STB 

Embryo 

B A 

Figure 6 Expression profiling of ZmSUN genes by Solexa tag-based and whole-transcriptome sequencing. mRNA from various B73
tissues was subjected to two Solexa sequencing platforms, Solexa whole-transcriptome (SWT) and Solexa dual-tag based (STB). The vertical axis
represents the number of 36-nt (SWT) or 21-nt (STB) sequence tag matches per ten million transcripts. (A) Expression levels of ZmSUN genes and
the control gene, cytoplasmic GAPDH, are graphed for comparison. (B) The same data are plotted as semi-log2 for easier comparisons among the
low-expression ZmSUN genes.
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experiment, providing better representation of genes
such as the ZmSUN genes that were expressed at low
levels in each organ. The two platforms gave similar
results for pooled tissue samples, as summarized in Fig-
ure 6 and tabulated in Additional file 4 Table S1. Most
of the SUN genes were expressed at low levels across
multiple tissues; expression was similar within tissue
types, regardless of developmental stage. The ZmSUN
gene expression levels were about 2% of those of the
moderately expressed housekeeping control gene, cyto-
plasmic glyceraldehyde 3-phosphate dehydrogenase
(GAPDH, Figure 6).
To show more clearly the variation in expression

levels among the SUN genes, we replotted the same
data as semi-log2 (Figure 6B). The overall expression
pattern is consistent with basic functions for SUN-
domain proteins in most cell types. A notable exception
to the widespread pattern of expression was that of
ZmSUN5, which showed a very distinct and much more
restricted pollen-related pattern of expression (Figure 6
pollen). Such an expression profile predicts that
ZmSUN5 should be required for specialized processes
such as nuclear migration down the pollen tube and
possibly double fertilization. An interesting and related
observation is that fertilization involves nuclear fusion,
as does karyogamy, which in yeast involves active
nuclear migration and SUN-domain proteins [9,38,62].
The present report represents the first description of

relative mRNA expression levels of all members of a
SUN gene family in any plant species and may therefore
prove useful to investigators of the functions of plant
SUN-domain proteins. Despite some variation in the
data across different expression platforms, as summar-
ized above, a consistent trend for most of the ZmSUN
genes is that they are expressed in many different tissues
at relatively low levels, a finding similar to that of Grau-
mann et al. [19] for the CCSD-type AtSUN2 gene. In
addition, we observed a distinct exception to this overall
pattern with ZmSUN5, whose expression appears to be
highly specific to pollen. Given the lack of information
on PM3-type SUN proteins, we set out to characterize
this group further in plants. We chose to examine a
PM3-type gene that was expressed in many cell types
including those expressed in meiosis-stage anthers with
possible roles in meiotic telomere functions.

Isolation and Characterization of a Maize PM3-type SUN-
Domain Protein Gene from a Meiotic cDNA Library
The role of SUN genes in telomere-associated recombi-
nation and crossover control has been established for
animals and yeast and is likely to exist in plants as well
[33,63,64]. In this regard, we find intriguing that two
different laboratories [65,66] recently and independently
mapped a recombination control QTL in maize to bin

3.06, where ZmSUN3 resides. We screened a meiosis-
enriched cDNA library for ZmSUN3 and its closely
related duplicate ZmSUN4 using a 639-bp PCR product
corresponding to a region of the SUN domain of
ZmSUN3 at a stringency of Tm-15°C. The probe has a
high degree of similarity to both ZmSUN3 and
ZmSUN4 yet it is not similar enough to ZmSUN5 or
either of the CCSD-type genes to detect them. From
approximately 500,000 plaques, we isolated two identical
full-length cDNA clones of ZmSUN4 with identical
insert sequences. The detection of ZmSUN4 but not
ZmSUN3 is consistent with the relative expression levels
for ZmSUN3 and ZmSUN4 in meiosis-stage anthers
(Figure 5).
The full-length cDNA sequence for ZmSUN4 [Gen-

Bank: GU453173] and the deduced protein sequence
and motifs are illustrated in Figure 7A. The predicted
protein sequence from the ZmSUN3 gene is also shown
(Figure 7B) and reveals that the B73 SUN3 and W23
SUN4 are 88% identical. This relatively high level of
protein similarity reflects their divergence after a maize
genome duplication event estimated to have occurred
about 5-12 mya [53]. The extent which these proteins
have evolved functionally remains unknown.
The W23 ZmSUN4 full-length cDNA is 2,158 bp in

length and has a predicted open reading frame (ORF) of
1,920 bp encoding a 639-residue protein with a pre-
dicted molecular mass of ~71 kD and an acidic isoelec-
tric point of 5.2 This full-length ZmSUN4 cDNA
predicts a protein with all of the motifs and arrangents
(Table 2 Figure 7B) that are typical of the entire class of
PM3 proteins.

Localization of a Maize PM3-type Protein
To test for the presence and localization of ZmSUN3/4
proteins in planta, we developed peptide antibodies for
western blotting and immunolocalization, and the
results are summarized in Figure 8 and 9. The peptides
used and the corresponding ZmSUN3/4 sequences are
shown Figure 8A. Our survey of a variety of tissues for
the presence of PM3-type proteins with antisera to
zms3gsp1A (Figure 8B) revealed only one band band of
about 70 kDa in all of the tissues surveyed, including
leaf, root, silk, husk, earshoot, embryo, preemergence
(meiotic) tassels, and emerged (postmeiotic) tassels. This
broad detection is consistent with the mRNA expression
profiles for ZmSUN3 and ZmSUN4 (Figure 5 and 6).
Our examination of proteins from isolated male flow-

ers at meiotic stages of development detected high-
molecular-weight bands that were considerably larger
than the predicted protein sizes. Given the number of
cysteine residues and the possibility of disulfide bridges,
we examined the effect of prolonged boiling
times in the presence of reducing agents (0.1 M 2-
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Figure 7 ZmSUN4 cDNA and protein features. (A) ZmSUN4 (genotype W23) full-length cDNA, showing the 5’ and 3’ UTRs, open reading frame
(ORF), and poly-A tail. A diagram of the protein indicates domain locations as described in Figure 3. (B) Annotated protein sequence predicted
from full-length cDNA ORF (GenBank GU453173). Color scheme is the same as in Figure 3. Amino acid residues below the ZmSUN4 sequence
show divergent residues of the duplicated locus on chromosome 3L, ZmSUN3, genotype B73.
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mercaptoethanol, 10% SDS) on the detectable band pat-
terns. These high-molecular-weight bands were not
detected in the protein samples examined for multiple
other, different, nonanther tissues (Figure 8B). The basis
for this difference is not known, but it may result from
more highly cross-linked SUN3/4 protein in the extracts

from anthers than in those from the other tissues. After
10 or more minutes of boiling, the antibodies detected a
single band of about 70 kDa (Figure 8C), similar to
those detected in the multitissue survey blot (Figure 8B).
Therefore, ZmSUN3, ZmSUN4, or both appear to be
present in meiosis-stage anthers.
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Figure 8 Western blot of proteins ZmSUN3 and ZmSUN4. (A) Two peptide antibodies were made against synthetic peptides within
(zms3gsp1a) and just after (zms3gsp2) the SUN-domain of the maize ZmSUN3 protein. The corresponding regions in ZmSUN3 and ZmSUN4 are
aligned, and asterisks indicate divergent residues in ZmSUN4. (B) Western-blot detection (top panel) of ZmSUN3 and ZmSUN4 in various plant
tissues. Protein was loaded on an equal-fresh-weight basis for leaf, root, silk, husk, earshoot, embryo, meiosis-stage tassel, and postmeiotic tassel,
resulting in the detection of a single band of ~72 kDa. (C) Immunoblot showing the effect of increased sample boiling time on bands detected.
Protein from meiosis-stage anthers appeared as a single band at ~70 kDa (arrow) after the protein was boiled in SDS for 10 min or more.
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Our examination of formaldehyde-fixed cells, shown in
Figure 9 revealed the strongest staining around the
nuclear periphery but also detected considerable speckled
cytoplasmic staining in a postmeiotic uninucleate pollen
mother cell. The cytoplasmic staining may reflect non-
specific background or true signal from ER-localized
PM3-type SUN-domain protein. Interestingly, we have
yet to detect staining in meiotic prophase nuclei with
these antibodies, possibly because of difficulty in the

preservation conditions or in detecting the epitope in
prophase nuclei or possibly because of an absence of
PM3-type SUN-domain proteins in meiotic cells. The
results of negative control experiments, using preimmune
sera and secondary antibody only, are shown in Figure 9
at image scaling comparable to that used for the anti-
PM3-antibody staining (Figure 9C). The lack of staining
in the controls suggests that the staining patterns noted
with the anti-PM3 sera were specific.

A B C DAPI FITC Merge 

5 µm 

D E 

F G 

Figure 9 Immunolocalization of PM3 SOGG3 Proteins at the nuclear periphery. Combined antisera (zms3gsp1a and zms3gsp2) or
preimmune control sera were used to stain formaldehyde-fixed uninucleate pollen mother cells. The immune complex was visualized by
deconvolution microscopy in the FITC channel with A488-goat-anti-rabbit sera. Images from a single cell are shown. (A-C) Projection of the
central 2/3 of the three-dimensional set of data shows DAPI image (A), FITC image (B), and pseudocolor overlay (C). Zoom up of a region of the
nucleus-cytoplasm boundary is shown for the FITC (D) and overlay (E) images. Control staining with preimmune sera (F) or secondary only (G)
are shown with a color scheme (red DAPI, green FITC) and scaling parameters that match those of panel C.
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These data provide the first direct evidence of a PM3
SUN-domain protein localized to the nuclear periphery
and suggest that this SUN domain in this subfamily of
plant proteins can reside in the NE like the CCSD pro-
teins. Together, these observations suggest that plant
nuclei contain multiple different SUN-domain proteins.

Models of the Topology of Plant SUN-domain Proteins
The two structural classes of plant SUN-domain pro-
teins found in maize, and shown to be occur commonly
in many plant species, may have different functions. If
they serve as physical connectors that transduce forces
from the cytoplasm to the nucleus, determining their
topologies and dispositions relative to the membranes of
the NE will be an important step toward elucidating
their biological roles. Several models of different topoli-
gical arrangements for generalized CCSD and PM3 SUN
proteins in the plant NE are presented in Figure 10.
If CCSD SUN proteins adopt a configuration like that

of plant, animal, or fungal SUN proteins, the most likely
arrangement would be that depicted by topology model
“A” in Figure 10. In this configuration, the N-terminus
would be in the nucleoplasm, possibly interacting with
chromatin, inner-nuclear-membrane-associated proteins,
or telomeres, and the SUN domain would be positioned
within the perinuclear space. Connections to the cyto-
plasm would require interactions with other proteins
embedded in the outer nuclear membrane. The config-
uration depicted in topology model “B” would suggest
an opposite set of interactions. Given the structure of
the NE, the two models are not necessarily exclusive, as

the two membranes are continuous and fused around
nuclear pore complexes.
For the PM3 SUN proteins, four different models (Fig-

ure 10) are presented for consideration because three
transmembrane domains are involved. The C-terminal
transmembrane domains are close together and unlikely,
although not necessarily unable, to traverse the entire
lumenal space. Only models with the last two trans-
membrane domains in the same membrane are there-
fore presented. Of these, topology models “D” and “E”
are intriguing in that they predict a single protein bridge
with both nucleoplasmic and cytoplasmic segments.
Topology model “C” could have two different nucleo-
plasmic segments and thereby serve as a scafold for
multiple nuclear molecules or complexes, including
chromatin and nonchromatin nuclear proteins, other
NE proteins, or telomeric DNA. Similarly, topology
model “F” depicts a protein with two cytoplasmic seg-
ments that might be capable of interacting with two
cytoplasmic partners, while requiring additional protein
interaction to form a functional nucleoplasmic-cytoplas-
mic bridge.
In nonplant systems, SUN proteins are linked to the

cytoplasm by an interaction with KASH-domain pro-
teins that traverse the outer nuclear membrane. The
KASH domain proteins connect to various cytoskeletal
components to function as cargo-specific cytoskeletal
adaptor proteins [13,42,67]. As a family, the KASH
domain proteins have limited homology over a small
portion of their entire protein sequence, and no plant
KASH-domain protein homologs have been identified

CCSD-Type PM3-Type 

Cytoplasm 

Perinuclear  
space 

Nucleoplasm 

Nuclear 
envelope 

Figure 10 Maize SUN topology models relative to the membranes of the nuclear envelope. Possible protein arrangement models with
the SUN (yellow) domain in the perinuclear space are shown for the CCSD (A-B) and PM3 (C-F) proteins. Models do not attempt to depict
multimer interactions that may occur with the SUN or coiled-coil (not shown) domains.
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by sequence analyses thus far. Genetic or protein interac-
tion screens may be required to identify SUN-interacting
partners and their function in plants.

Conclusions
The maize genome encodes a family of SUN-domain pro-
tein genes that form two distinct classes; the CCSD-type,
resembling canonical SUN-domain proteins, and the
PM3-type, representing a novel structural class shown
here to be expressed in multiple tissues of maize and con-
centrated at the nuclear periphery in pollen mother cells.
These two subfamilies are found in flowering plants and
moss and therefore probably originated early in plant evo-
lution, if not before that. The discovery of this gene family
opens new avenues for investigation of molecular mechan-
isms that may link nuclear architecture to chromatin
dynamics and nuclear positioning in maize. Future genetic
analyses will be important for defining the biological role
of these plant SUN genes in vivo.

Methods
Bioinformatics and SUN Gene Models
The B73 reference maize genome http://www.maizese-
quence.org was queried with SUN-domain protein
sequences from C. elegans Unc-84 [GenBank:
NP_001024707], S. pombe Sad1p [GenBank: NP_595947],
and rice Sad1 [GenBank: NP_001055057], which identified
CCSD protein genes (ZmSUN1 and ZmSUN2). Further
BLAST searches with these sequences led to the identifica-
tion of PM3 genes (ZmSUN3, 4, 5). Genomic DNA struc-
tures for ZmSUN genes were produced with full-length
cDNAs, ESTs, or EST contigs with B73 genomic DNA
with SPIDEY, http://www.ncbi.nlm.nih.gov/spidey. The
genomic structure for ZmSUN3 was determined from
available EST assembly data at PlantGDB http://www.
plantgdb.org/, as no full-length B73 cDNA clone was avail-
able at the time. Protein parameters including amino acid
length, molecular weight, and isoelectric points were
obtained from ExPASy [68]. Secondary structure domains,
including the locations of the SUN domain, predicted
coiled coils, and predicted transmembrane regions, were
obtained from the NCBI conserved-domain database (ver-
sion 2.21), COILS [69], and TMpred [70] prediction soft-
ware respectively. The PAD located in ZmSUN3, 4, and 5
was identified by analysis of a multiple sequence alignment
of full-length proteins of maize, Arabidopsis, sorghum,
rice, and a moss (P. patens) with ClustalW2 http://www.
ebi.ac.uk/Tools/clustalw2/. The phylogenetic tree dis-
played in Figure 1 was created by ClustalW2, with the
default multiple-sequence-alignment matrix (Gonnet 250)
and is displayed as an unrooted maximum-likelihood tree
from TreeView, version 1.6.6 [71].

mRNA Expression Analyses of ZmSUN Genes
Expression data for mRNA levels was extrapolated from
three different sources. For the UniGene EST, expres-
sion profiles are computed relative abundance values
derived from NCBI’s UniGene for ZmSUN1 (Zm.94705),
ZmSUN2 (Zm.6043), and ZmSUN4 (Zm.17612). For the
anther microarray data, relative expression levels were
extracted from microarray experiments available at
NCBI (Gene Expression Omnibus, http://www.ncbi.nlm.
nih.gov/geo/[72,73]). The cDNAs were originally
obtained from meiosis-stage anthers that were 1 mm,
1.5 mm, or 2 mm in length. Probe signals for ZmSUN
genes were determined as previously reported [61]. For
transcriptome analysis, Poly(A+) RNA was isolated from
various maize tissues with Trizol (Gibco, BRL), Qiagen,
MACS (Miltenyi Biotec), and FastTrack (Invitrogen)
RNA isolation kits. Two Solexa-based transcript-quanti-
fication platforms were used to measure the abundance
of SUN transcripts, the Solexa shole-transcriptome and
Solexa dual tag-based methods [74,75]. Both of these
technologies involve 36-nt or 21-nt sequence read
lengths produced from multiple locations in the tran-
scripts. The whole-transcriptome data were not restric-
tion-enzyme anchored, so the multiple 36-nt sequences
were spread along the transcripts. For the dual-tag-
based methods two four-base cutter restriction enzymes,
DpnII and NlaIII, were used as initiation sites for the
21-nt sequences, and therefore deep transcript counts
were obtained from fewer sites in the transcripts. Only
repetitive sequence reads found at 10 or fewer distinct
locations in the B73 genomic sequence (by comparison
to 17,455 publicly available B73 BAC sequences) were
used in determining the relative gene expression levels.
Sequences found more than 10 times in the genome
were classified as repetitive sequences and were
excluded from the analysis. The GAPDH cytoplasmic
gene is known to have a moderate and relatively ubiqui-
tous expression level in many maize tissues [76] and is
included for comparison. The dual tag-based analysis
was carried out with an Illumina GA2 machine and
cDNAs treated with two restriction enzymes, DpnII and
NlaIII. The aggregate counts of the resulting sequence
reads from these sites, excluding repetitive sequences,
were used to quantify the overall gene expression level,
reported here in parts per ten million transcripts.

Molecular Cloning and Sequence Analysis of a Maize Full-
Length SUN cDNA, ZmSUN4
A full length maize PM3-type SUN cDNA was isolated
by hybridization screening from a meiosis-enriched tas-
sel cDNA library (library 11, inbred line W23, a gift
from J. M. Gardiner, University of Arizona, Tucson).
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The library was screened with a PCR product from
maize B73 genomic DNA. Maize B73 genomic DNA
from leaf tissue was isolated as previously described [77]
with slight modifications: The 2-mercaptoethanol was
replaced with 3 mM dithiothreitol (DTT), homogenized
tissue samples were incubated at 65°C for 20 min, and
the aqueous extraction buffer was supplemented with
1% polyvinylpyrrolidone (Sigma P-5288) and 1% W:V
polyvinyl polypyrrolidone (Sigma P-6755). Genomic
DNA (20 ng) was used in a 20-μL PCR reaction with
forward and reverse ZmSUN3/4-specific primers
(cg1pf1, 5’-GTGATTTGGAGATGCCAGGTG-3’ and
cg1pr1, 5’-TTTGAGCAAGTTTTGCATTCG-3’, respec-
tively) to produce a 639-bp fragment corresponding to a
region within exon 2. The PCR product was resolved on
1% agarose, gel purified, and then cloned into the PCR
2.1-TOPO cloning vector (Invitrogen). The plasmid,
pSPM17-2, was digested with EcoRI, and the insert was
gel purified, quantified, and used in a random-primed
labeling reaction with a-32p-dCTP (Amersham Redi-
prime™ II DNA Labeling System) for use in cDNA
library screening. Approximately 5 × 105 phage at a
high stringency (Tm-15°C) were screened.

Antibody Production and Immunoblotting
Amino acids 244-256 (ZmSUN3) were chosen as an epi-
tope for the production of rabbit polyclonal antisera to
be used to study PM3 proteins in maize. We selected
the sequence (zms3gsp1a, LDKDKDKYLRNPC) to allow
for the detection of either of the closely related
ZmSUN3 and ZmSUN4 proteins. A second peptide anti-
body was also generated against ZmSUN3 (zms3gsp2,
ENKKTEPDDKTKEP). Antibody production, including
synthesis of the peptides and affinity purification, was
carried out by GenScript (complete affinity-purified rab-
bit polyclonal antibody package, SC1031, GenScript Cor-
poration, Piscataway, NJ).
Total maize protein extracts were obtained as pre-

viously described [78], with slight modifications: Briefly,
one gram of tissue was harvested, ground to a powder
in liquid nitrogen, and then homogenized in 3 mL of
extraction buffer containing 50 mM Tris-HCl (8.0),
1 mm EDTA-NaOH (8.0), 10% w:v sucrose, 100 mM
dithiothreitol, and 1× protease inhibitor complex (4-(2-
aminoethyl) benzenesulfonyl fluoride, bestatin, pepsta-
tinA, E-64, leupeptin, and 1,10-phenanthroline, Sigma
Aldrich). The homogenate was centrifuged at 12,000 × g
for 20 min at 4°C, and the supernatant was recovered
and used immediately for immunoblotting or stored at
-80°C. For western analyses, protein extracts were mixed
with 5× sodium dodecyl sulfate (SDS) loading buffer
(25 mM Tris-HCl [6.8], 0.1 M 2-mercaptoethanol, 10%

SDS, and 50% glycerol), boiled for 5 min, and separated
by electrophoresis on a 10% (w/v) SDS-polyacrylamide
gel. Proteins were transferred by electroblotting (over-
night, 4°C, 30 mA) to a 0.45-μm polyvinylidene fluoride
transfer membrane (PALL life sciences, Port Washing-
ton, NY) in a Bio-Rad Mini-PROTEAN 3 Cell. After the
membranes were blocked with 5% (w/v) nonfat milk in
phosphate-buffered saline plus 0.05% [v/v] Tween-20
(PBS-T) buffer, they were incubated with a-zms3gsp1a
diluted 1:2,000 with PBS-T at room temperature for 1 h.
After four 15-min washes in PBS-T buffer at room tem-
perature, the membranes were incubated with a 1:5,000
dilution (in PBS-T buffer) of anti-rabbit IgG horseradish
peroxidase-linked antibody (Santa Cruz Biotechnology,
Santa Cruz, CA) for 1 h at room temperature, then sub-
jected to four 15-min washes in PBS-T buffer at room
temperature. The immune complexes were visualized
with a chemiluminescent reaction kit for 5 min at room
temperature (Millipore, Immobilon detection kit,
WBKL50100, Billerica, MA).

Protein Immunolocalization and Microscopy
Maize pollen mother cells were microdissected and
fixed in meiocyte Buffer A [45] with 1% paraformalde-
hyde supplemented with 100 mM DTT for 30 min at
room temperature. The anthers were then rinsed in
Buffer A alone for 30 min at room temperature and
stored at 4°C. Cells were prepared for immunofluores-
cence microscopy by embedding in polyacrylamide, fol-
lowed by a 1-h room-temperature treatment in
permeabilization buffer (1% Triton X-100, 1 mM
EDTA-NaOH, and 1% BSA in 1× PBS). The acrylamide
pads on the slides were then incubated in blocking
buffer (3% BSA, 5% normal sheep serum, 1 mM
EDTA-NaOH, 0.1% Tween-20, and 1 mM DTT in 1×
PBS) at 30°C for 2 h and then incubated with the pri-
mary antibodies (a-zmS3gsp1a, a-zmS3gsp2, or preim-
mune sera at 1:50) in blocking buffer or blocking
buffer alone (for secondary-only control) overnight at
30°C. After four consecutive 15-min washes at room
temperature with 1× PBS, cells were incubated with a
FITC-conjugated goat anti-rabbit IgG (1:1500 in block-
ing buffer) for 1 h at 30°C then given four 15-min
washes with 1× PBS at room temperature. Cells were
stained with 3 μg/mL DAPI (4’,6-diamidino-2-pheny-
lindole) in 1× PBS for 30 min at room temperature,
rinsed three times with 1× PBS, treated with vecta-
shield antifading solution, and finally sealed with a 22
× 30 × 1.5 mm coverslip. Images were collected on an
Olympus IX-70 epifluorescense microscope, decon-
volved, and analyzed with the SoftWorx computerized
workstation.
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Additional material

Additional file 1: Multiple sequence alignment of full-length maize
CCSD proteins. Full-length plant CCSD-type protein sequences predicted
from cDNAs from maize, sorghum, rice, Arabidopsis, and moss were
aligned by the maximum-likelihood approach (ClustalW2). Residues with
at least 50% similarity are shaded in grey, identical amino acids in black.

Additional file 2: Multiple sequence alignment of full-length maize
PM3 proteins. Full-length plant PM3-type protein sequences predicted
from cDNAs from maize, sorghum, rice, Arabidopsis, and moss were
aligned by the maximum-likelihood approach (ClustalW2). Residues with
at least 50% similarity are shaded in grey, identical amino acids in black.

Additional file 3: Gene expression profiles of the maize SUN-
domain protein genes available from NCBI’s Unigene. Gene
expression data for ZmSUN1, 2, and 4 as well as cytoplasmic GAPDH are
shown. Tissues pooled for each gene are indicated at the left, and the
corresponding Unigene accession numbers are indicated for each gene.

Additional file 4: Solexa expression data for B73 ZmSUN genes.
Expression data are given here as transcripts per ten million for each of
the maize ZmSUN genes. Platforms, sample ID’s, tissue, and
developmental stages are also given. WT = Solexa whole transcriptome;
Tag = Solexa tag-based.
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Supplemental Table1.  Solexa Expression Data for ZmSUN Genes in Maize Inbred B73.

Platform 
and 

Sample 
Number Sample ID

Dev. 
Stage Tissue

ZmSUN1 
(GenBank 
EU964563)

ZmSUN2 
(GenBank 
BT055722)

ZmSUN3 
(GRMZM2G1

22
914_T01)

ZmSUN4 
(GenBank 
GU453173)

ZmSUN5 
(GenBank 
EU953247)

WT_001 A0140042 V5 Root 384 203 91 69 0
WT_002 A0140043 V19 Root 205 126 83 37 0
WT_003 A0140066 V5 Leaf 191 118 24 13 0
WT_004 A0140067 V5 Leaf 110 100 30 13 0
WT_005 A0140068 V5 Leaf 99 78 25 13 0
WT_006 A0140040 V5 Leaf 86 106 14 2 0
WT_007 A0140041 V19 Leaf 159 102 25 18 0
WT_008 A0140051 V8 Stalk 191 159 56 39 0
WT_009 A0140069 V8 Immature Ear 492 204 220 67 0
WT_010 A0140070 V8 Immature Ear 266 232 74 40 0
WT_011 A0140071 V8 Immature Ear 223 200 57 58 0
WT_012 A0140044 V8 Immature Ear 287 242 46 44 0
WT_013 A0140045 V19 Immature Ear 143 140 53 66 0
WT_014 A0140049 R4 Embryo 183 70 59 26 0
WT_015 A0140047 R2 Kernel 75 43 36 24 0
WT_016 A0140048 R4 Endosperm 194 142 81 78 0
WT_017 A0140050 R4 Pericarp 159 100 93 46 0
WT_018 A0290001 V5 Tassel 116 102 34 16 3
WT_022 A0290002 V6 Tassel 435 184 95 86 0
WT_026 A0290003 V7 Tassel 444 172 110 81 0
WT_030 A0140046 V19 Tassel 364 200 71 52 0
WT_031 A0140052 R1 Pollen 71 49 0 2 116
Tag_001 A0400001 V5 Root 107 349 38 27 0
Tag_002 A0400002 V5 Root 98 272 99 52 0
Tag_011 A0140007 V5 Root 166 403 158 96 0
Tag_012 A0140008 V5 Root 126 332 79 63 2
Tag_013 A0140009 V5 Root 127 439 222 231 0
Tag_014 A0140010 V19 Root 129 436 147 99 0
Tag_015 A0140011 V19 Root 120 237 82 35 0
Tag_016 A0140012 V19 Root 86 256 23 20 0
Tag_017 A0140001 V5 Leaf 65 362 45 20 0
Tag_018 A0140002 V5 Leaf 112 237 55 21 0
Tag_019 A0140003 V5 Leaf 167 667 131 84 2
Tag_020 A0090019 V14 Leaf 118 435 41 26 0
Tag_021 A0090020 V14 Leaf 117 324 38 30 0
Tag_022 A0090021 V14 Leaf 84 301 32 30 0
Tag_023 A0090022 V14 Leaf 45 178 9 3 0
Tag_024 A0090023 V14 Leaf 69 131 11 6 0
Tag_025 A0090024 V14 Leaf 55 196 16 9 0
Tag_026 A0090025 V14 Leaf 39 228 13 7 0
Tag_027 A0090026 V14 Leaf 43 246 11 6 0
Tag_028 A0090027 V14 Leaf 66 305 36 19 0
Tag_029 A0090028 V14 Leaf 52 209 12 7 0
Tag_030 A0090029 V14 Leaf 77 185 3 3 0
Tag_031 A0090030 V14 Leaf 43 195 10 4 0
Tag_032 A0090031 V14 Leaf 57 208 33 10 0
Tag_033 A0090032 V14 Leaf 46 289 26 3 2

Expression values in parts per 10 million

hankbass
Typewritten Text

hankbass
Typewritten Text



Tag_034 A0090033 V14 Leaf 28 211 13 2 0
Tag_035 A0090034 V14 Leaf 36 264 5 0 0
Tag_036 A0090035 V14 Leaf 70 202 19 6 0
Tag_037 A0090036 V14 Leaf 62 194 11 2 0
Tag_038 A0140004 V19 Leaf 44 227 36 20 0
Tag_039 A0140005 V19 Leaf 45 267 24 9 0
Tag_040 A0140006 V19 Leaf 57 243 28 10 0
Tag_041 A0140034 V8 Stalk 83 332 131 71 1
Tag_042 A0140035 V8 Stalk 167 364 166 108 0
Tag_043 A0140036 V8 Stalk 203 321 164 102 0
Tag_044 A0140013 V8 Immature Ear 252 730 138 80 0
Tag_045 A0140015 V8 Immature Ear 151 1163 134 89 0
Tag_046 A0220001 V10 Immature Ear 184 309 132 100 0
Tag_047 A0220002 V10 Immature Ear 90 498 131 63 0
Tag_048 A0220003 V10 Immature Ear 48 298 47 23 0
Tag_052 A0090001 V14 Immature Ear 152 680 132 50 0
Tag_053 A0090002 V14 Immature Ear 116 791 111 59 2
Tag_054 A0090003 V14 Immature Ear 154 662 98 54 0
Tag_055 A0090004 V14 Immature Ear 154 639 206 88 0
Tag_056 A0090005 V14 Immature Ear 180 611 123 54 0
Tag_057 A0090006 V14 Immature Ear 201 544 205 60 0
Tag_058 A0090007 V14 Immature Ear 151 645 130 48 0
Tag_059 A0090008 V14 Immature Ear 140 551 127 53 0
Tag_060 A0090009 V14 Immature Ear 142 662 115 61 0
Tag_061 A0090010 V14 Immature Ear 158 805 89 36 0
Tag_062 A0090012 V14 Immature Ear 109 586 127 62 0
Tag_063 A0090013 V14 Immature Ear 131 730 92 35 2
Tag_064 A0090014 V14 Immature Ear 142 734 148 71 0
Tag_065 A0090015 V14 Immature Ear 182 613 138 68 0
Tag_066 A0090016 V14 Immature Ear 154 654 149 48 0
Tag_067 A0090017 V14 Immature Ear 137 832 127 52 0
Tag_068 A0090018 V14 Immature Ear 127 706 102 35 0
Tag_069 A0140016 V19 Immature Ear 186 722 139 64 0
Tag_070 A0140017 V19 Immature Ear 219 794 125 72 0
Tag_071 A0140018 V19 Immature Ear 135 760 181 87 0
Tag_072 A0140028 R4 Embryo 67 195 70 30 0
Tag_073 A0140029 R4 Embryo 77 195 56 31 0
Tag_074 A0140030 R4 Embryo 47 156 47 14 0
Tag_075 A0140022 R2 Kernel 43 172 108 43 0
Tag_076 A0140023 R2 Kernel 33 177 104 31 0
Tag_077 A0140024 R2 Kernel 34 101 47 22 0
Tag_078 A0140025 R4 Endosperm 90 376 195 66 0
Tag_079 A0140026 R4 Endosperm 65 384 238 101 0
Tag_080 A0140027 R4 Endosperm 81 500 206 93 0
Tag_081 A0140031 R4 Pericarp 39 344 146 59 0
Tag_082 A0140032 R4 Pericarp 60 309 147 58 0
Tag_083 A0140033 R4 Pericarp 82 256 180 101 0
Tag_084 A0140019 V19 Tassel 41 274 40 15 0
Tag_085 A0140020 V19 Tassel 44 224 44 12 3
Tag_086 A0140021 V19 Tassel 112 288 218 65 0
Tag_087 A0140037 R1 Pollen 68 110 50 14 35
Tag_088 A0140038 R1 Pollen 41 131 29 11 28
Tag_089 A0140039 R1 Pollen 66 131 85 24 49

Footnotes:
Platform: WT = Solexa Whole Transcriptome; Tag = Solexa Tag-based
Developmental stage designations are as described for Figure 6.
Accession numbers for corresponding genes are shown in parentheses and are from B73, except for ZmSUN4. 
The ZmSUN3 sequence is a gene model from www.maizeseqence.org, B73 AGPv1, 2010
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